
International Journal of Information Security manuscript No.
(will be inserted by the editor)

Hristo Koshutanski · Aliaksandr Lazouski · Fabio Martinelli · Paolo Mori

Enhancing Grid security by fine-grained behavioral control
and negotiation-based authorization

Abstract Nowadays Grid has become a leading tech-
nology in distributed computing. Grid poses a seam-
less sharing of heterogeneous computational resources
belonging to different domains and conducts efficient col-
laborations between Grid users. The core Grid function-
ality defines computational services which allocate com-
putational resources and execute applications submitted
by Grid users. The vast models of collaborations and
openness of Grid system require a secure, scalable, flexi-
ble and expressive authorization model to protect these
computational services and Grid resources. Most exist-
ing authorization models for Grid have granularity to
manage access to service invocations while behavioral
monitoring of applications executed by these services re-
mains a responsibility of a resource provider. The re-
source provider executes an application under a local ac-
count, and acknowledges all permissions granted to this
account to the application. Such approach poses serious

Hristo Koshutanski was supported by the Marie Curie Intra-
European fellowship 038978-iAccess within the 6th European
Community Framework Programme. Aliaksandr Lazouski,
Fabio Martinelli and Paolo Mori were partially supported by
the EU project FP6-033817 GridTrust (Trust and Security
for Next Generation Grids)

H. Koshutanski
Computer Science Department, University of Malaga
Campus de Teatinos, 29071 Málaga, Spain
E-mail: hristo@lcc.uma.es

A. Lazouski
Dipartimento di Informatica, Universita di Pisa
Largo Bruno Pontecorvo, 3, 56127 Pisa, Italy
E-mail: lazouski@di.unipi.it

F. Martinelli
Istituto di Informatica e Telematica, Consiglio Nazionale
delle Ricerche
Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy
E-mail: fabio.martinelli@iit.cnr.it

P. Mori
Istituto di Informatica e Telematica, Consiglio Nazionale
delle Ricerche
Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy
E-mail: paolo.mori@iit.cnr.it

security threats to breach system functionality since ap-
plications submitted by users could be malicious.

We propose a flexible and expressive policy-driven
credential-based authorization system to protect Grid
computational services against a malicious behavior of
applications submitted for execution. We split an au-
thorization process in two levels: a coarse-grained level
that manages access to a computational service; and
a fine-grained level that monitors the behavior of ap-
plications executed by the computational service. Our
framework guarantees that users authorized on a coarse-
grained level behave as expected on the fine-grained level.
Credentials obtained on the coarse-grained level reflect
on fine-grained access decisions. The framework defines
trust negotiations on coarse-grained level to overcome
scalability problem, and preserves privacy of credentials
and security policies of, both, Grid users and providers.
Our authorization system was implemented to control
access to the Globus Computational GRAM service. A
comprehensive performance evaluation shows the practi-
cal scope of the proposed system.

Keywords Grid security · Authorization · Access
control · Trust negotiation · Behavioral control

1 Introduction

Grid technology concerns about sharing, managing, and
integrating resources and services within a heterogenous,
dynamic, and distributed computational environment. A
group of entities deploys Grid technology to share their
resources across organizational boundaries and to solve
some particular tasks. Grid technology has been success-
fully exploited for execution of computational or data
intensive applications with very large scale simulations
e.g., earthquake simulation [47], large scientific data sets
[9], or climate study [40,36].

One of the fundamental Grid functionality is the abil-
ity of clients to execute their applications on remote com-
putational resources allocated by Grid [15]. This ability

2 Hristo Koshutanski et al.

gives high-value to distributed computing. Often enti-
ties dedicated to providing computational resources are
different and independent from entities exploiting them.
Grid, by its nature, is a large-scale open system which
includes enormous number of entities. These entities may
belong to different administrative domains with poten-
tially unknown (trust) relationships among them.

In this paper, we focus on security issues in Grid. The
Grid Security Infrastructure (GSI) [17] provides a set of
mechanisms and tools to enhance security in the Grid.
GSI has been implemented in the Globus toolkit [14], the
most used middleware to set up Grids. By default, autho-
rization in Globus is realized for service-level invocation
and implies identity-based access control using Gridmap
file. Gridmap faces scalability problem in Grid formed
by a large number of unknown users. Several credential-
based authorization models have been proposed [21,50,
49,33,12,4]. They follow the scenario where administra-
tors of Grid domains issue credentials to users that spec-
ify permissions users can hold on Grid resources. Autho-
rization system checks validity of presented credentials
to grant or deny an access.

For open systems like Grid, an assumption on pre-
existing relationships between entities does not hold, and
any user should be treated as distrusted and potentially
malicious. Existing authorization solutions for Grid have
only granularity to manage access to service invocations
(coarse-grained access control), while service execution
and behavioral monitoring (fine-grained access control)
remain under the responsibility of a resource provider.
Service instance is assigned to the local account and has
all permissions granted to this account. Such approach
compromises the principle of least privilege [41]. More-
over, executing remote and potentially malicious appli-
cations on a local Grid platform of a resource provider
poses serious security threats to breach system function-
ality. With dynamic coalitions and resource-consuming
requests, existing approaches are neither flexible nor se-
cure and expressive enough for coherent access control on
both coarse- and fine-grained levels. Grid entities should
be able to define and enforce a desired level of protec-
tion on their resources and establish trust relationships
dynamically from scratch.

To overcome the above identified problems, we pro-
pose a flexible and expressive authorization system al-
lowing coarse-grained authorization to access Grid com-
putational services, and fine-grained monitoring of ap-
plications executions submitted by remote Grid users.
The coarse-grained authorization implies that a remote
Grid user has sufficient access rights on computational
services intended to use, while the fine-grained monitor-
ing ensures that a user’s application explores resources
only under the user’s access rights granted on the coarse-
grained level and in accordance to application behav-
ior allowed by a fine-grained security policy. Integrating
two levels of control in a single framework, we ensure
that users authorized on the coarse-grained level exploit

computational resources and behave as expected on the
fine-grained level. This protects Grid node from unau-
thorized resource usage and malicious behavior of appli-
cations submitted by remote Grid users.

We implemented the trust negotiation scheme [26] for
the coarse-grained authorization1 to mitigate the scala-
bility problem in Grid, and to enhance the expressiveness
of the coarse-grained level. Trust negotiation is a policy-
based technique that provides entities with the right to
protect their own credentials and to negotiate with other
entities access to those credentials. Trust negotiation al-
lows two network entities to establish requirements to
access a resource by mutually requesting each other sen-
sitive credentials until a sufficient trust is established.
The authorization decision is more efficient comparing to
simple ”yes/no” and based on entity’s credentials rather
than on their identity. Moreover, trust negotiation is an
efficient technique for peer’s privacy preservation and dy-
namic policy evaluation. We implemented trust negotia-
tion only on the coarse-grained level due to its compu-
tational cost.

Fine-grained authorization is implemented through a
reference monitor that enforces a behavioral control on
the execution of remote users’ application. A fine-grained
behavioral policy determines the allowed sequence of ac-
tions which can be executed on underlying resources.
Credentials obtained during the coarse-grained autho-
rization are taken into account for access decisions at the
fine-grained level. The novelty of exploiting credentials
of coarse-grained in the fine-grained level allows us to en-
force a coherent credential-based access control from ser-
vice instance creation till its elimination. We use POLPA
policy language [35] to define behavioral policies and to
integrate credential-based decisions into the behavioral
control process.

The proposed authorization system was successfully
implemented and deployed in the Globus toolkit. The
system governs access to the Grid Resource Allocation
and Management (GRAM) service [13] and its under-
lying computational resources. GRAM is a fundamental
Globus service enabling remote clients to securely instan-
tiate, manage, and monitor computational tasks (jobs)
on remote resources [53]. The authorization system con-
trols the execution of java-based applications submitted
by remote Grid users. We did a detailed performance
evaluation of the system, and the obtained results were
positive to show system practical aspects.

Below we summarize key system security properties:

Coarse-grained level. Credential-based authorization en-
hanced with trust negotiation. Trust negotiation pre-
serves security threat of unauthorized disclosure of
sensitive credentials and security policies. It preserves
peer’s privacy and reveals minimum of peer’s infor-
mation needed to succeed coarse-grained authoriza-
tion. Trust negotiation is a suitable methodology when

1 Available at http://www.interactiveaccess.org

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 3

establishing access rights with unknown and poten-
tially malicious users. Trust negotiation establishes
access rights dynamically from scratch. Integration
of X.509 [57] identity and attribute certificates was
implemented in our model.

Fine-grained level. Efficient and flexible behavioral con-
trol enhanced with credential-based access decisions
on remote Grid users’ applications execution. Fine-
grained access control protects a Grid node from threats
of a malicious behavior of applications submitted for
execution. Fine-grained access control guarantees that
computational resources are exploited properly. En-
hancing expressiveness of fine-grained level, we intro-
duced the use of (temporal) behavioral credentials
reflecting access decisions over a long-term resource
usage.

Two-levels integration. Our model integrates two layers
of security, coarse- and fine-grained access control,
through the usage of same user’s attributes. From
the security point of view, the integration of the two
levels guarantees that a user will exploit fine-grained
recourses in compliance with access rights granted on
the coarse-grained level. Such approach satisfies the
principle of least privilege and assumes fully credential-
based access control on both levels. To the best of our
knowledge, none of existing authorization systems for
Grid could enforce both levels of access control.

The paper is organized as following. Section 2 de-
scribes related work in the field. Section 3 defines the
high-level system architecture and its functionality. Sec-
tion 4 reviews the fine-grained behavioral control model
and its policy language. Section 5 outlines the credential-
based access control model underlying both the coarse-
and fine-grained levels. Section 6 presents a negotiation
scheme underlying the authorization service, and its in-
tegration in Globus. A Grid usage scenario and an ex-
ample of integrated security policies are shown in Sec-
tion 7. Section 8 describes details on system integration
into the Globus toolkit. Section 9 provides analytical de-
tails on the framework performance evaluation. Section
10 discusses security aspects of system design and its
architectural components. Conclusions and future work
are drawn in section 11.

2 Related Work

This Section presents current research efforts devoted
to improving Grid authorization model, and how our
system model enhances them. The default authoriza-
tion framework in Grid, and particularly in Globus, im-
plies identity-based authorization. Grid users are iden-
tified and simply mapped to local accounts on resource
provider hosts. Such authorization system suffers from a
lack of policy expressiveness, as well as, it is unable to
scale and manage a large user base. As a result, it com-
promises the principle of least privileges. Recent studies

on Grid security [10,27,33,12,4,38] tend to move from
identity-based to credential-based authorization to over-
come the scalability problems.

Keahey and Welch [21,50] propose an approach that
adapts an existing authorization system, called Akenti
[51], to the Grid environment. Similarly, Stell et al. [49]
integrate a role based access control (RBAC) infrastruc-
ture, called PERMIS [8], with Globus. The main func-
tionality behind PERMIS and Akenti is that the infor-
mation needed for an access decision is stored and con-
veyed in certificates, which are widely dispersed over a
network (e.g., LDAP directories, Web servers, etc). The
authorization engine has to gather and verify all user’s
related certificates and evaluate them against the ac-
cess policy in order to take a decision. X.509 identity
and attribute certificates are used in PERMIS to at-
test and convey users credentials. Relevant access control
frameworks such as VOMS, PRIMA [33], XPOLA [12],
GridShib [4], Cardea [29], and CAS [16,38] are also de-
signed to embody credential-based authorization into the
Globus toolkit.

However, the access control frameworks mentioned
above manage coarse-grained access to a service invoca-
tion and suggest one-step (single ”sign-on”) authoriza-
tion process. Most of them assume that the requester
has some preliminary knowledge about authorization to-
kens required to access the resource. These tokens later
are pushed or pulled to an authorization engine which
replies usually with boolean grant or deny. This approach
is not expressive and flexible enough to work in an open
and dynamic environment like Grid.

Trust negotiation [54,55] is a promising technique
that was proposed for authorization and access control
in open environments where any entity could be a mali-
cious. Trust negotiation allows to authorize peers which
do not have complete knowledge about each other, be-
long to different administrative domains, and may have
never interacted before. Trust negotiation implies credential-
based authorization and bilateral exchange of creden-
tials. Definitely, the next step in evolution of authoriza-
tion frameworks for Grid is the incorporation of a trust
negotiation capability.

Recently, only few trust negotiation schemas have
been successfully developed for the Globus toolkit. Traust
authorization service [27] incorporates into GridFTP ser-
vice a trust negotiation functionality. The approach em-
ploys trust negotiation in Grid using existing negotiation
mechanisms and protocols such as TrustBuilder [56] and
Trust-X [7] systems. The Traust service allows to ob-
tain the credentials needed to access data provided by
the GridFTP server at runtime without previously as-
signed account. Thus, a user opens a new connection
to the GridFTP server and starts the specific command
”TRAUST”. The response of the GridFTP server is for-
warded to the external Traust server. The Traust server
acts as a broker that negotiates with the user. If trust
negotiations between the Traust server and user succeed,

4 Hristo Koshutanski et al.

the Traust server issues credentials needed to log into the
GridFTP server. These credentials are mapped to the ap-
propriate GridFTP account and the user may access the
data.

Instead of using centralized trust negotiation service,
the model proposed in [10] deploys PeerTrust [37] ne-
gotiation capabilities into the Grid service functionality.
A policy decision point (PDP) of Globus authorization
service is extended by an intercepter of service requests.
The intercepter grants access to a service if a negotiation
process has been successfully completed. The negotiation
module, implemented as a service port type, negotiates
with the requester. Negotiations are asynchronous and
implemented though WS-Notification mechanisms. The
implementation changes the service WSDL file and ex-
ploits state-full resources defined by WS-Resource Frame-
work2.

The authorization framework presented in this paper
also enforces trust negotiation on coarse-grained level.
Opposing to approaches in [27,10], we integrated in Globus
Toolkit our authorization service with trust negotiation
capabilities exploiting the SAML authorization callout
mechanism. Thus, the negotiation-based authorization
service could be internal (i.e. on the same node) or exter-
nal. This makes our approach more flexible as no mod-
ifications are required in the code of a service and its
deployment on the coarse-grained level. The integration
is done only by a proper specification of a service descrip-
tor. Moreover, after a detailed analysis of our prototype
performance the results were as promising as those re-
ported in Traust. We recall this information in Section
9.

Several works express and enforce security policies on
coarse-grained level assuming different policy complex-
ity. CAS, Akenti, XPOLA and PRIMA already provide
more expressive authorization model in comparison with
Globus gridmap. They are plugged into Globus Toolkit
and achieve the policy granularity by specifying access
rules on service instance, as well as on the operation to
be invoked and even operands of the operation. Access
permissions to the underlying resources used by Grid
services such as files and databases are also governed by
those authorization systems. Our approach introduces
flexible and expressive model to specify complex secu-
rity policies. As example, a security policy (from Grid
usage scenario presented in Section 7) manages access to
the service and computational libraries aligned with this
service.

Once access to a Grid service is granted (GRAM
service in our case), the service execution and access
control to underlying resources is enforced by the host-
ing environment. In the current Globus implementation,
a service instance is assigned to a local account of a
host’s operating system and may perform any opera-
tion allowed by that account. From the security point
of view, this access control model violates the least priv-

2 http://www.globus.org/wsrf

ilege principle and is not expressive enough to define a
fine-grained access control over Grid resources. By the
way, some attempts were done to security on fine-grained
level. For instance, PRIMA proposes to use dynamic user
accounts created on demand and to grant access permis-
sions on short-live basis. The approach given in [30] en-
forces RBAC in the Globus and proposes to bind the ap-
propriate authorization service to the resources in MDS
information service. The EU DataGrid Security archi-
tecture [1] introduces several enforcement mechanisms
like GridACL, LCAS and Java authorization manager.
The approach in [22] enhances fine-grained monitoring
of jobs executed by Globus GRAM service. The autho-
rization model controls the resource requirements stated
at the RSL of the job request and management requests
coming from the user (e.g., suspend, stop, etc.).

Despite of this approaches, fine-grained access con-
trol over Grid services is not scrutinized sufficiently. As
a matter of fact, a proper fine-grained access control is
a vital requirement for Grid computational services (e.g.
GRAM) where users could submit a potentially danger-
ous applications for execution. If there is no control over
applications execution, nothing could prevent a user to
submit malicious code and breach system functionality.
To the best of our knowledge, fine-grained monitoring of
applications execution was not presented so far in Grid.

The fine-grained level security support of our frame-
work could be related to a kind of Intrusion Detection
Systems (IDS), or Application Based Anomaly Detec-
tion systems. The Application Based IDS, a particular
case of Host Based ones, are software components that
monitor the actions executed by the applications they
are paired with. Some of them simply use log files to de-
tect the actions executed by the application, while oth-
ers are interfaced with the application to be monitored
through a specific component. To detect whether a par-
ticular application behavior is an attack, Anomaly De-
tection IDSs exploit a model of the usual behavior of the
specific application to be monitored, which has been de-
fined in advance, and determine if the current behavior
complies with this model. Some systems, beside detect-
ing the malicious behavior, are also able to confine the
application, by avoiding the execution of forbidden ac-
tions. Some Application Based Anomaly Detection IDSs
choose the system calls as security relevant actions per-
formed by the applications; some examples can be found
in [39,19,45].

Despite of some similarities, Application Based Anomaly
Detection IDSs also present several differences with re-
spect to the approach proposed in this paper. Firstly,
our policy model expressiveness was enhanced by using
composition operators allowing to define very complex
sequence of actions. Secondly, fine-grained access con-
trol in our model takes into account several factors in
the decision process, such as user’s credentials obtained
during coarse-grained authorization. Moreover, in case
of IDSs, the applications to be monitored are typically

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 5

the operating system daemons, and the policies are cus-
tomized for each specific application, i.e. distinct ap-
plications are monitored with distinct policies. In our
approach, instead, a single (behavioral) policy is paired
with the computational node, and expresses how appli-
cations can exploit the resources provided by the node
(look at the example in Section 7 where the behavioral
policy defines constraints for using the computational li-
braries provided by the Grid node). Finally, to the best
of our knowledge, it is the first time when a fine-grained
monitoring system has been adopted in Grid computing
to protect computational resources from the threat rep-
resented by the applications executed on behalf of remote
Grid users.

Summarizing, our approach extends existing autho-
rization solutions in Grid by encompassing coarse- and
fine-grained levels into a coherent authorization frame-
work and continues the work in [24,23]. We define trust
negotiation on the coarse-grained level to authorize the
invocation of a service instance, and to grant access for
intended to use computational resources. Credentials ob-
tained during the coarse-grained authorization are taken
into account for access decisions at the fine-grained level.
Fine-grained authorization is implemented through a ref-
erence monitor that enforces a behavioral control on ex-
ecuted user’s applications. Our framework guarantees
that users authorized on a coarse-grained level behave
as expected on the fine-grained level.

3 System Architecture and Functionality

In this section we review system high-level architecture
and its message flow. The important aspect here is to
identify the main components necessary to enforce coarse-
grained and fine-grained access control.

Figure 1 shows the overall architecture. It consists
of two blocks representing a Grid user and a Grid re-
source provider belonging to different security domains.
We note that in our notation each Grid user domain
could act as Grid resource provider domain but in differ-
ent sessions, and vice versa. We functionally distinguish
their roles with respect to a given application execution
request.

Grid resource provider holds a Globus container. The
Globus container is the component that manages the
infrastructure services (including the authorization ser-
vice) and the set of Grid’s services that are provided to
remote Grid users. Hence, the Globus container receives
the service request from the remote Grid user, performs
the configured security checks, and starts the requested
service. We start by symbolically dividing the Grid re-
source authorization facilities in two operational parts:
coarse-grained access control on a service level (light-
gray color area in figure 1); and fine-grained behavioral
control on the usage of computational resources.

The coarse-grained level controls invocations of Grid
services with service-level granularity. This level is evi-
denced in most of the access control systems for Grid,
as we have seen in the previous section. We consider ac-
cess control requirements on that level (matured enough
in policy technologies and specifications) to be similar
to those of existing trust management and negotiation
models [31,43]. These requirements include: attribute-
based access decisions, attribute-based delegation, policy
constrains such as separation of duties or mutually ex-
clusive attributes, etc. We extended the standard Grid
authorization model with automated trust negotiation
capabilities to satisfy these requirements, and free the
assumption on preexisting trust relationships between
entities.

Thus, the first component we introduce is the negotiation-
based Authorization Service. It operates as a PDP on
the coarse-grained level. The Authorization Service is
invoked by the Globus Container once the request for
a service has been received (messages 1 and 2). The au-
thorization service implements the access control model
outlined in Sections 5 and 6 and includes two subcom-
ponents:

(i) Trust Negotiation Engine – responsible for carrying
out the negotiation protocol described in Section 6.
The protocol runs over a protected channel (message
3) and utilizes credential negotiation in order to en-
force (on the fly) user’s and resource provider’s mu-
tually satisfiable requirements.

(ii) Credential Manager – complements the functionali-
ties of the trust negotiation engine. It provides inter-
faces for: certificate validation and verification, cer-
tificate transformation to logic predicates suitable for
policy evaluation, user profile maintenance (PKI and
logic level), allocation of requested credentials by an
opponent. It conforms to X.509 certificate framework.

The credential manager keeps an internal database
for credential transformations. The database also includes
what logic data structures are used for identity and at-
tribute certificates, how X.500 names are mapped to
internal (logic) identifiers, and what internal identifiers
trusted CAs and SOAs have.

In order to achieve interoperability of negotiations
with a Grid resource provider a Grid user should have
an instance of the authorization service including a trust
negotiation engine and a credential manager on its side.

When a trust negotiation completes, the authoriza-
tion service sends an access decision response back to the
Globus container (message 4). Globus container includes
itself a policy enforcement point (PEP) on the coarse-
grained level which enforces access decisions (if positive)
by creating a service instance (message 5). Here, we fo-
cus on the Globus Resource Allocation and Management
service (GRAM). GRAM is the service that allows the
execution of applications on the local resources on be-
half of remote Grid users. The fine-grained level of our

6 Hristo Koshutanski et al.

Fig. 1 High-level system architecture

authorization system monitors Java applications initi-
ated by the GRAM service. However, the authorization
request/response interactions are defined for any Globus
container-related services so one can apply the system ar-
chitecture to authorize and monitor executions of other
(java-based) Grid services.

The most critical aspect on the fine-grained level is to
provide efficient components controlling access to under-
lying computational resources. We have defined a Fine-
grained PEP (a component integrated into the Java VM)
that intercepts system calls performed by an applica-
tion (message 6). The Fine-grained PEP enforces the
decisions taken by a Fine-grained PDP. Sections 4 and
5 overview the security models considered for the fine-
grained control. The Fine-grained PDP consists of a Be-
havioral PDP and a Property PDP. The Behavioral PDP
is invoked by the Fine-grained PEP every time a system
call is performed. The behavioral policy is defined by the
computational resource owner to describe acceptable se-
quence of actions performed on computational resources
by an application. When some of the resources have spe-
cific requirements or specific properties to be met regard-
ing users’ credentials (e.g., when opening a file), then
the behavioral policy defines that as an external prop-
erty evaluation. These specific properties are predefined
for a given Grid domain and are encoded as logic rules.
These rules define properties based on user’s credentials
gathered during trust negotiation on the coarse-grained
level. The rules are stated in a property policy. Thus, the
Behavioral PDP interacts with the Property PDP only
on those application steps in accordance with the behav-
ioral policy when evaluation of an external property is
required (message 7 and 7’). If a system call is authorized

the Behavioral PDP informs the Java VM (thought the
Fine-grained PEP) to execute the call (message 8).

The Property PDP has the responsibility to evalu-
ate user specific properties against user’s active creden-
tials submitted to the system. The Property PDP op-
erates as part of the Grid authorization service and in-
tegrates credential-based information on coarse-grained
level with fine-grained behavioral requirements and their
evaluation. Since we aim at protecting computational re-
sources from third-party applications executed on behalf
of (remote) Grid users, so it is not enough that the be-
havioral policy defines allowed system traces based on
application-only information such as system calls per-
formed, but also on user-specific information, called user
properties, relevant to the behavioral decision process
and based on user high-level credential definition. In this
way we also strengthen the coherence of the authoriza-
tion decisions on both levels.

A Grid Resource Data component maintains a repos-
itory of security information relevant to the system. This
includes: coarse-grained security polices; fine-grained be-
havioral and property policies; Grid certificates for mu-
tual trust negotiations; and users’ profiles of active cre-
dentials.

4 Behavioral Access Control Model

The model described in this section defines the fine-
grained level of our system architecture, because it is
aimed at improving the security of Grid computational
services. Since a Grid computational service executes ap-
plications submitted by remote (and possibly malicious)

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 7

Grid users on the local resource, our authorization sys-
tem monitors the execution of such applications and en-
forces a fine-grained and history-based security policy.
The monitoring is fine-grained because instead of consid-
ering the execution of an application as a single atomic
action, we split down the monitoring in basic actions per-
formed by an application during its execution. In partic-
ular, since we are interested in the interactions with the
underlying resource, the actions we monitor are the sys-
tem calls that applications invoke on the operating sys-
tem level. Hence, the sequence of actions performed by
an application during its execution defines the behavior
of the application itself. This sequence is not determin-
istic, because it may depend on various factors, such as
specific input values.

The model is history-based because the actions that
an application is allowed to perform at a given point of
its execution depend on its past behavior, i.e. on the se-
quence of actions previously executed by the application
itself. Hence, a given action a could be allowed only if
some other actions have (not) been already executed.

We introduce a behavioural policy in order to define
the set of actions and the execution patterns that appli-
cations must conform to. The behavioral policy is defined
by the resource provider, i.e. by the Grid node adminis-
trator, to protect the resources shared on the Grid com-
putational node, such as data, file system, network or
software libraries. The policy is trusted, because it is de-
fined and enforced by the same authority that owns the
resources to be protected. The policy defines the behav-
ioral patterns that should be followed to interact with
these resources. The behavioral policy enforcement en-
sures that each application follows these behavioral pat-
terns. A new instance of the same policy is created to
monitor each application submitted to the Grid node.
However, the policy specification does not depend on
the specific application to be monitored, but on the re-
sources to be protected. The policy is updated when the
resources are changed or other administrative actions are
demanded (e.g. to make a more restrictive behavioral
pattern exploiting resources). In particular, a behavioral
policy consists of several rules, each defining the admit-
ted behavior to access a distinct resources. Rules could
be independent one from each other, or there could be
interactions among some of them. For example, let us
suppose that the Grid computational node provides two
conflicting software libraries, A and B, that export dif-
ferent implementations of the same functions, and that
an application can use functions of A or functions of B,
but it cannot use functions of A and B together. In this
case, the policy could state that in principle applications
can access any function of the two libraries, but when
an application uses a function from A, then it can use
functions from A only while access to B is forbidden, and
vice versa.

To express a behavioural policy we adopt an opera-
tional policy language, because it is close to user’s exper-

tise, and we use a process description language because
we deal with a sequence of actions. The name of the
proposed language is POLPA, POlicy Language based
on Process Algebra. The following grammar shows the
operators of POLPA:

P ::= ⊥ ‖ > ‖ α(x).P ‖ p(x).P ‖ x := e.P ‖ P1orP2 ‖
P1parα1,..,αnP2 ‖ {P} ‖ Z

where P is a policy, α(x) is a security-relevant ac-
tion, p(x) is a predicate, x are action parameters and/or
variables and Z is a constant process definition Z

.= P .
The informal semantics is the following:

– ⊥ is the deny-All operator;
– > is the allow-All operator;
– α(x).P is the sequential operator, and represents the

possibility of performing an action α(x) and then be-
have as P ;

– p(x).P behaves as P in the case the predicate p(x) is
true;

– x := e.P assigns to variables x the values of the ex-
pressions e and then behaves as P

– P1orP2 is the alternative operator, and represents the
non deterministic choice between P1 and P2;

– P1parα1,...,αnP2 is the synchronous parallel operator.
It expresses that both P1 and P2 policies must be
simultaneously satisfied. This is used when the two
policies deal with actions in (α1, . . . , αn);

– {P} is the atomic evaluation, and represents the fact
that P is evaluated in an atomic manner. P here
is assumed only to have one action, predicates and
assignments;

– Z is the constant process. We assume that there is a
specification for the process Z

.= P and Z behaves as
P .

As an example, if the policy includes the sequence
a.b.c, where a, b and c are security relevant actions, the
application can execute the action b only if a has been
already executed, and it can execute c only if a and b
have been executed.

As usual for (process) description languages, derived
operators may be defined. For instance, P1parP2 is the
parallel operator, and represents the interleaved execu-
tion of P1 and P2. It is used when the policies P1 and P2

deal with disjoint actions. The policy sequence operator
P1;P2 may be implemented using the policy languages
operators (and control variables) (e.g., see [18]). It allows
to put two processes behavior in sequence. By using the
constant definition, the sequence and the parallel oper-
ators, the iteration and replication operators, i(P) and
r(P) resp., can be derived. Informally, i(P) behaves as
the iteration of P zero or more times, while r(P) is the
parallel composition of the same process an unbounded
number of times.

The previous grammar shows that our policy can also
include properties that have to be verified before the ap-
plication is allowed to invoke a given system call on the

8 Hristo Koshutanski et al.

resource. These properties are represented by predicates
that precede the systems calls they refer to. As an exam-
ple, a(x).[p(x), q(x)].b(x) means that the properties p(x)
and q(x) must be verified before performing the action
b(x), but it is not required that are verified before the
execution of the action a(x). These properties could in-
volve the evaluation of conditions of various nature. For
instance, they can force the value of some system call
parameter. In the following rule:

[(x1 == READ)].open(x0,x1,x2,x3)

the predicate that precedes the open system call states
that the second parameter of this action, i.e. the open
mode, must be equal to the constant READ. This allows
the application to open files in read mode.

Predicates could also include properties that concern
the evaluation of factors that does not involve only the
system calls and their parameters. The exploitation of
external factors provides a flexible way to evaluate dis-
tinct kind of conditions from the ones provided by the
behavioural policy, i.e. to integrate and exploit other
policies with the behavioral one. A very simple example
could be a property that evaluates whether the current
time is within a given time interval.

The definition of an integrated framework for the
specification and analysis for security and trust in com-
plex and dynamic scenarios was introduced in [34]. Par-
ticularly in our model, the behavioural policy could in-
clude properties that involve the evaluation of a set of
credentials submitted by a user during trust negotiations
on the coarse-grained level. This novelty was done in or-
der to integrate fine-grained and coarse-grained levels
and enforce a coherent credential-based access control
from a service instance invocation till its termination. A
new predicate, property(User, β) is embedded in our
policy to state that a property β regarding user distin-
guished name User is to be verified by an external evalu-
ation. The credential evaluation is done by a logic engine
and in accordance to a user property policy introduced in
the next section. Let us consider the following example.

[property(User, non profit)].open(x0,x1,x2,x3)

It allows an application to open files only if the prop-
erty non profit is validated according to an access pol-
icy. We note that the predicate denotes a template for
a property query and User is instantiated with the dis-
tinguished name of the user (an application running on
behalf of), as shown in the usage scenario in Section 7.
When an external property has to be evaluated, the be-
havioural policy delegates the decision to an evaluation
module (in our case, the Property PDP). Once a decision
is taken the monitoring is resumed and exploited by the
behavioural policy.

The details concerning the implementation of the en-
gine that evaluates the behavioral policy, i.e. the Behav-
ioral PDP, are described in [35], while the integration of

this engine in the proposed architecture is described in
section 8.

5 Credential-based Access Control

In this section we examine the syntax and semantics
of the access control model underlying both the coarse-
grained access decision and the fine-grained property eval-
uation process. Access policies are written as normal
logic programs [3]. A logic program is a set of rules of
the form:
A ← B1, . . . , Bn, not C1, . . . , not Cm (1)
A is called the head of the rule, each Bi is called a posi-
tive literal and each not Cj is a negative literal, whereas
the conjunction of Bi and not Cj is called the body of
the rule. If the body is empty the rule is called a fact.

In the model we also have constraints that are rules
with an empty head.
← B1, . . . , Bn, not C1, . . . , not Cm (2)
A constraint (2) is used to rule out from the set of ac-
ceptable models situations in which all Bi are true and
all Cj are false.

Below we list the core predicates defined for the logi-
cal model representation at coarse- and fine-grained level.
– grant(User, Service : s, Action : p, Resource : r) a

predicate denoting that a User is granted to invoke
an action p on a Grid service s which exploits an
underlying resource r.

– property(User, Property: p) a predicate denoting
that a User has a property p.

– cred(User, Attr : a, Issuer : i) a predicate denoting a
credential token of a User having attribute a issued
by i.

– behav cred(User, Status : s) a predicate denoting
that a User has a behavioral status s.

The access control model presented in this section ab-
stracts from specific policy syntax so one can adopt dif-
ferent syntax for information representation such as re-
source representation, credential information, behavioral
information, user properties etc. In the model we have
predefined sets of identifiers for user properties (Property),
attributes (Attr), credential issuers (Issuer), behavioral
status (Status), resources (Resource) and actions (Action).
Since Grid is an open system with a priori unknown
clients we do not have a predefined set of client iden-
tities in the model. We denote that with a variable User
specifying untyped entity value in the respective fields of
the predicates above.

5.1 Coarse-grained Access: Feedback on Missing
Credentials

The intuition behind the coarse-grained access control
model is to provide clients with a feedback on missing

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 9

AccessDecisionWithFeedback(r, PA, PD, CA, CN)

1: if r is a consequence of PA and CA then grant
2: else
3: compute a set of disclosable credentials CD entailed

by PD and CA. Remove from CD all presented
and declined credentials, i.e. CD = CD \ (CN ∪ CA),

4: compute a set of missing credentials CM such that
(i) CM ⊆ CD,
(ii) PA together with CA and CM grant r,
(iii) CA and CM preserve PA consistent.

5: if no set found then deny else ask(CM).

Fig. 2 Coarse-grained access decision with feedback on miss-
ing credentials

credentials in cases of not enough access rights. Also
the work by [20,6] identifies the need of a feedback on
access control requirements for open systems. The un-
derlying access control model [25] is data-driven by two
logic reasoning services: deduction and abduction [46].
We use deduction logic reasoning when taking decisions
on whether a client has enough access rights to get a ser-
vice, and abduction on logic programs as a core reasoning
when computing a feedback on missing credentials. This
section illustrates the essence of the interactive access
control process as a core element for negotiation. We re-
fer the reader to [25] for details on the two reasoning
services and their deployment in an interactive access
control model.

Each Grid security domain has a security policy for
access control PA and a security policy for disclosure
control PD. PA protects Grid’s resources by stipulating
what credentials a requester must satisfy to be autho-
rized for a particular resource while, in contrast, PD de-
fines which credentials among those occurring in PA are
disclosable so, if needed, can be demanded from a client.

Each user has a profile of active credentials CA avail-
able to a Grid security domain during a negotiation pro-
cess. The server keeps user’s set of active credentials for
the duration of the user application request and its exe-
cution in Grid. The credential profile is also accessible by
the fine-grained monitoring level regarding user property
decisions.

A Grid security domain also keeps a set of declined
credentials CN that keeps track of what credentials a
client has declined to provide within a negotiation ses-
sion. Declined credentials are internal to the negotiation
model and are kept only for the duration of a current
authorization process. They are not used at fine-grained
level. The purpose of the declined credentials is to avoid
loops in a negotiation process and to guarantee success-
ful interactions in presence of alternative solutions.

Figure 2 shows the core access decision algorithm
with feedback on missing credentials. Input to the deci-
sion process is the service request, access policy, disclo-
sure policy, user’s set of active and declined credentials.
First step checks if the user has enough access rights to
access the resource according to its active credentials and

Grid’s access policy. If the check succeeds the function
returns grant.

In case of not enough access rights, the algorithm
performs two steps to compute a feedback on missing
credentials. It first computes a set of disclosable creden-
tials inferred form user’s active credentials and the Grid’s
disclosure policy, and from the resulting set, it removes
the already presented and declined credentials. Second,
the algorithm uses an abduction reasoning to compute
a set of missing credentials, out of the disclosable ones,
that is sufficient to unlock the requested resource. The
abduction reasoning guarantees that if a solution exists
then it is consistent with the access policy and user’s ac-
tive credentials. If a solution set is found it is returned
back, else a denial message is returned instead.

The coarse-grained access control process is imple-
mented by using the DLV system [28] as a back-end en-
gine for the deductive and abductive computations, while
the fine-grained level is implemented by using only the
deductive computation.

5.2 Fine-grained Access: User Property Evaluation

Fine-grained property evaluation supports the applica-
tion behavioral control process in inferring user prop-
erties based on user’s profile of active credentials. The
definition of user properties is in accordance with the
requirements defined by the behavioral control process.
In addition, the inference of user properties may be de-
pendent on user behavioral status reflecting a long term
resource usage, where user behavioral status is encoded
as behavioral credentials.

Behavioral credentials are temporal (one-time-use)
credentials that indicate user behavioral status over a
service usage. These credentials grant some additional
rights to a user and are based on user’s past behav-
ior. The Grid resource owner defines the acceptable be-
havior of applications and, as such, defines the possi-
ble values of behavioral credentials to be used at the
fine-grained level. Behavioral credentials are internally
generated by the Behavioral PDP in accordance with
pre-defined rules encoded as part of the behavioral spec-
ification. Behavioral credentials are neither managed by
third party providers, nor they are defined by users. They
do not reflect on the coarse-grained authorization speci-
fication, but give meaning only to the fine-grained access
control process. Users have indirect impact on behavioral
credentials, by the behavior of applications they execute
via the GRAM service.

We denote PF to be a user property policy defining
the acceptable properties considered by the behavioral
model, and CB to be a set of behavioral credentials. Both
the policy and the properties are defined by the Grid
node administrator and exploited on the same node. The
credentials granting the properties to the Grid users are
local as well, because are generated by the Behavioral

10 Hristo Koshutanski et al.

PDP and exploited by the Property PDP on the same
Grid node. Since both the policy and credentials are de-
fined and exploited locally, we consider them as trusted.

To query for a property the Behavior PDP specifies
〈q, CB〉 tuple as an input to the Property PDP, where
q = property(user, property) is a query to the policy
PF . The Property PDP first allocates user’s profile of ac-
tive credentials CA by the user identifier and then evalu-
ates, if PF together with CA and CB entail the requested
user property q. The Property PDP returns grant if q is
derived else deny message is returned.

6 Negotiation-based Authorization

In this section we outline the negotiation schema [26] un-
derlying the authorization service, and discuss its imple-
mentation aspects and integration in the Globus toolkit.

6.1 Negotiation schema overview

We first define the three security policies that clients
(Grid users) and servers (a provider of Grid computa-
tional service and resources) have:

– PAR a policy for protecting opponent’s own resources
based on foreign credentials

– PAC a policy for protecting opponent’s own creden-
tials based on foreign credentials

– PD a policy for disclosure the need of (missing) for-
eign credentials

Figure 3 shows the negotiation protocol. The proto-
col runs on both client and server side. The meaning of
CA, CN and CM is read as the set of presented foreign
credentials, the set of declined foreign credentials and
the set of missing foreign credentials, respectively. We
also denote with O a set of own credentials with respect
to a negotiation opponent. We also defined the notion
of suspended credential requests to handle the fact that
during a negotiation process entities may start to request
each other credentials that are already in a negotiation.
The set Oneg keeps track of the opponent’s own cre-
dentials that have been requested and which are still in
negotiations. Hence, if a request for a credential already
in a negotiation the protocol suspends the request until
the respective negotiation thread is finished. When the
original thread returns an access decision the protocol
resumes all threads awaiting on the requested credential
with the decision.

A negotiation process has the following main steps:

1. A client, Alice, sends a service request r and (option-
ally) a set of credentials Cp to a server, Bob.

2. Bob’s negotiation dispatcher receives the requests,
checks if it is a service request and runs the negoti-
ation protocol in a new thread with new negotiation
session.

3. When the protocol is run, it updates opponent’s set of
active credentials with the newly presented ones and
checks if the request is already being in a negotiation
(steps 1 and 2).

4. If Alice’s request is not to be suspended then Bob
looks at r and if it is a request for a service he calls
for an access decision with his policy for access to re-
sources PAR, his policy for disclosure of foreign cre-
dentials PD, the set of Alice’s active CA and declined
CN credentials (step 9).

5. If r is a request for a credential then Bob calls for
an access decision with his policy for access to own
credentials PAC , his policy for disclosure of foreign
credentials PD and Alice’s active CA and declined
CN credentials (step 11).

6. In the case of computed missing credentials CM (steps
12 and 13) Bob transforms CM into single requests
for credentials and awaits until receives all responses
(steps 1–5 of AskCredentials function). At this point
Bob acts as a client, requesting Alice the set of miss-
ing credentials. Alice runs the same protocol with
swapped roles.

7. When Bob receives all responses, he restarts the loop
and consults for a new access decision.

8. When a final decision of grant or deny is taken, the
respective response is returned back to Alice.

6.2 Negotiation schema implementation

We adopted a thread-based negotiation of missing cre-
dentials by transforming the need of missing credentials
into a sequence of single requests each asking for a for-
eign credential from the missing set. Each request for a
credential spurs a new negotiation thread that negotiates
access to this credential.

One of the technical issues in the protocol is in the
way the server requests missing credentials back to the
client. We use the keyword parfor for representing that
the body of the loop is run each time in a parallel thread.
Thus, each missing credential is requested independently
from the requests of the others. At that point of the pro-
tocol, it is important that each of the finished threads
updates presented and declined sets of credentials prop-
erly without interfering with other threads. We note that
each credential request marks (updates) the requested
foreign credential as declined after a session time expires.

The thread based implementation with shared CA
and CN is necessary to allow for a polynomial execu-
tion time of the trust negotiation protocol with respect
to the number of queries to the abduction algorithm. In-
deed, without a shared memory of received credentials it
is possible to structure policies in a way that a creden-
tial would be asked many times. In this way, the protocol
queries for credentials are bounded by the number of cre-
dentials occurring in the policy PAC .

Declining a credential in a negotiation process is when
an entity is asked for it and the same entity replies to the

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 11

Negotiation session: CA, CN and Oneg. Initialization: CA= CN= Oneg= ∅.
NegotiationDispatcher{
OnReceiveRequest 〈r, Cp〉 do

1: if isService(r) then
2: reply resp = NegotiationProtocol(r, Cp); // in a new session thread.
3: else
4: reply resp = NegotiationProtocol(r, Cp); // in a new thread under the original session.

OnSendRequest 〈r, Op〉 do

1: result = invoke NegotiationProtocol(r, Op)@Opponent; // in a new session thread.

}
NegotiationProtocol(r, Cp){
1: CA = CA ∪ Cp ;
2: if r ∈ Oneg then
3: suspend and await for the result on r’s negotiation;
4: return result when resumed;
5: else
6: Oneg = Oneg ∪ {r};
7: repeat
8: if isService(r) then
9: result = AccessDecisionWithFeedback(r, PAR, PD, CA, CN);

10: else
11: result = AccessDecisionWithFeedback(r, PAC, PD, CA, CN);
12: if result == ask(CM) then
13: AskCredentials(CM);
14: until result == grant or result == deny;
15: Oneg = Oneg \ {r};
16: resume all processes awaiting on r with the result of the negotiation;
17: return result;
18: end if
}
AskCredentials(CM){
1: parfor each c ∈ CM do
2: response = invoke iAccessNegotiation(c, ∅)@Opponent;
3: if response == grant then CA = CA ∪ {c} else CN = CN ∪ {c};
4: end parfor
5: while CM 6⊆ (CA ∪ CN) do wait();
}

Fig. 3 Negotiation protocol and dispatcher

request with answer deny. When an entity is asked for a
credential and there is a counter request for additional
credentials then the thread started the original request
awaits for the reply and treats the requested credential
as not yet released.

The negotiation protocol has been implemented in
Java. When a trust negotiation module is initially loaded
it internally loads an application server and sets the dis-
patcher module resident in the memory awaiting on re-
quests. When the server receives a request it automat-
ically redirects the request to the dispatcher which in
turn transforms it from raw data to a high-level repre-
sentation.

The negotiation dispatcher is an essential component
to the negotiation protocol. The dispatcher has a role of
a negotiation server that manages entities requests and
their negotiation sessions. Whenever a request arrives
the dispatcher runs the negotiation for that request in
a new thread that shares same session variables CA, CN
and Oneg with other threads running under the same
negotiation session.

On each received request the dispatcher analyzes the
session data from the request and its local database and
acts as following. If no session data is specified in the
request (and request for a service) then the dispatcher
generates new session information (CA=CN= Oneg=∅)
and runs the negotiation protocol with the new session
information. If a session exists and the session data cor-
rectly maps to the corresponding one in dispatcher’s local
database then the dispatcher runs the negotiation proto-
col in a thread under the existing session. If the specified
session does not match to any internal session then deny
message is returned back.

Figure 4 shows the architecture and communications
of the negotiation module. The architecture logically splits
a negotiation process in two levels: negotiation requests
and session management; and pure credential negotia-
tion. The division is driven by the goal of making efficient
and scalable negotiations for a multi-user environment
such as Grid.

12 Hristo Koshutanski et al.

Fig. 4 Negotiation framework message interoperation

Fig. 5 Negotiation-based authorization and monitoring life
cycle

6.3 Negotiation schema integration in Globus

We deployed the negotiation engine (with the credential
manager module) in both Globus GRAM client (Grid
user) and Globus container (Grid resource provider) to
make the negotiation framework interoperable. We ex-
ploited standard Globus mechanisms for the seamless
integration.

Figure 5 shows the negotiation-based authorization
life cycle. It consists of the following steps:

1. A Globus client sends a Globus service request (1)
handled by the Globus container. The request trig-
gers an authorization request (1’) initiated by the
client side and directed to the Globus service provider’s
authorization service. Once step (1’) is done, the ser-
vice provider’s authorization service establishes an
SSL channel (mutual authentication) with the client’s
negotiation engine (1”). Important to note here is
that step (1’) essentially requests for access rights
establishment on a specific computational resource
that is to be exploited by the application requested
in step (1). The user authorization module is config-
ured to send in step (1’) a complete request includ-
ing the Globus service (GRAM in our case as the

user submits a remote application) and the specific
computational resource to be exploited.

2. The real trust negotiation starts when the Globus
container has processed the application request (in
step (1)) and sends a SAML authorization request to
the authorization service, step (2). On its side, the
authorization service compares the request to those
requests received directly from Grid users and starts
negotiating with the user that matches to the con-
tainer’s request.
We note that step (2) is independent form the oc-
currence of step (1”) but step (3) takes place only if
steps (1’), (1”) and (2) have taken place.
In case of more than one computational libraries nec-
essary for a client to obtain an authorization for, one
can extend the authorization service to handle multi-
ple negotiations by repeating steps (1’)–(4) each for
a single computational library.

3. The trust negotiation protocol runs over an SSL se-
cure socket connection providing message confiden-
tiality. The SSL connection with mutual authenti-
cation bootstraps a negotiation process with initial
identity token exchange. Once the negotiation proto-
col is initialized the client and authorization server
negotiate on the resource’s requirements.
The trust negotiation phase includes X.509 certifi-
cate tokens exchange, validation and transformation
to logic predicates.

4. When the negotiation is over and access decision has
been taken, step (4), the authorization service sends
back to the Globus container a SAML response with
the result of the authorization, step (4’). It is the
starting point when the Globus container initiates
the service execution, step (4”), and the behavioral
application control, step (5).

7 A Grid Usage Scenario

This section presents an example of the security policies
introduced so far and a Grid usage scenario.

Assume, a computing center decides to share part of
its computational services on a Grid platform to acquire
new users. The center offers a set of free java libraries
that can be invoked by user applications for efficient com-
puting of mathematical functions, (e.g. the Fast Fourier
Transform, Matrix inversion, file format conversion, etc).
According to an internal policy of the computing center,
these libraries can be used by researchers or students of
universities and by members of non profit organizations.
At the same time, the computing center also offers a
commercial version of the same libraries but used only
by users that have paid a given fee, or that belong to a
set of associations (e.g., IEEE members).

Moreover, the development staff of the computing
center continuously work to improve the performances
of the free libraries and the beta versions of the libraries

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 13

are tested directly by the computing center’s users. Since
the beta version of the libraries could include some errors
that could, in principle, allow unfamiliar users intention-
ally or unintentionally to breach a system functionality,
the computing center decides to allow only well-behaved
users to access beta libraries. The behavior of a user is
qualified as well-behaved if the user has exploited the
computational services and its underlying resources for
a given time interval without any security violations.

Figure 6 shows the coarse-grained security policies of
the computing center and a user underpinning our nego-
tiation scenario. The figure presents access, credential,
and disclosure policies of the computing center, as well
as, credential and disclosure policies of the user in the
scenario.

We use a term starting with a capital letter (e.g.,
User, Rprovider, etc) to refer to a variable that repre-
sents any value in its field. The variable is referable from
other predicates within a same rule. Terms starting with
lower case letters represent constants in a policy (e.g.,
marioRossi, visaConfirmed, etc).

The coarse-grained access policy of the computing
center governs access to a computational service and its
underlying resources. Access permissions vary based on
what underlying resources a user claims to utilize during
his application execution. For example, the invocation
of the free version of the java library is granted to se-
nior researchers and PhD students at the University of
Malaga, given that they submitted a credential attesting
their positions. It also states that access to the beta ver-
sion of the library is given to those who have access to
the free version.

Students and researches at the University of Malaga
officially enrolled to IEEE community may utilize facil-
ities of the commercial version of the computational li-
brary without fees. Otherwise, to access the commercial
version of the library a payment transaction is required.
How the payment transaction goes in Grid is out of the
scope of our model. We present an access policy govern-
ing a disclosure of information needed by the computing
center to complete a payment transaction. For instance, a
visa card credential could contain information embossed
on the user’s physical payment card. A ssn (social secu-
rity number) credential could be asked additionally by
the computing center to validate the user’s account. In
user’s turn, the user could request a visa confirmed cre-
dential from the computing center to escape frauds and
prove that the computing center is eligible to complete
payment transactions.

Note, that on the coarse-grained level a user only
claims which library his application needs for the execu-
tion. Even authorization is done for the claimed library,
there is no way on the coarse-grained level to guaran-
tee that the application will actually use this claimed
library later on during its execution. However, these is-
sues are managed by the fine-grained enforcement part.
Fine-grained level assures that the application calls a li-

brary authorized to access on the coarse-grained level.
Also, fine-grained level can grant some additional ac-
cess rights to well-behaved applications. For instance,
the coarse-grained access policy contains the same rules
to access stable or beta version of the computational li-
braries. On this level of granularity these libraries are
indistinguishable, and only a fine-grained PDP will de-
cide whether to grant or deny access to a specific library
during the execution of a user’s application. Such inte-
gration of two levels of control is the main novelty of our
approach.

The credential policy of the computing center allows
access to computing center affiliation credential to users
that have presented a credential attesting their employee
status. Access to the visa confirmed credential of the
computing center is not protected and given on request.
Although this credential could be additionally protected
we omit it simplifying the negotiation scenario.

The disclosure policy discloses the need of all creden-
tials involved in the access policy. Since in the paper we
do not focus on negotiation strategies and how to dis-
close sensitive credentials, we structure the policy as all
credentials are disclosable at any request for negotiation.

Looking at the user side, the credential policy con-
trols an access to the social security number and visa
card credentials of the user. The policy states that the
user allows access to his visa card credential only if a
computing center proves his official agreement with Visa
Inc. Similarly, the social security number credential is
sent during negotiations if the computing center is al-
lowed to collect such information by an appropriate gov-
ernment affiliation. In contrary, the credential stating
user’s employment record is disclosed freely on demand.

Figure 7 shows fine-grained security policies of the
computing center. The behavioral policy defines a con-
straint on applications using the Grid computational li-
braries: if a given application has used a function from
the free library (stable or beta version), then it cannot
use any function from the commercial library, and vice-
versa, even if the user that submitted the application
holds the required attributes to exploit both libraries.

In particular, the first rule set of the behavioral pol-
icy allows access to the free library, the second rule set
allows to access the commercial version, while the third
rule set allows to access the beta version. There is a vari-
able OF, with initial value false, used to control when the
free library is used so that preventing the use of the com-
mercial one. In the same way, the variable OC prevents
the use of the free and beta version libraries when the
commercial library has been accessed. The forth rule of
the behavioral policy allows to read data files and write
(result) files in the “/tmp” directory.

The behavioral policy defines fine-grained access con-
trol on computational resources based on application be-
havior and user specific property. The policy defines that
access to the libraries is given to users (referred to by
their applications) satisfying specific (credential-based)

14 Hristo Koshutanski et al.

COMPUTING CENTER SECURITY POLICIES:
Access Policy:

grant(User, gramService, create, free mathlib) ← cred(User, studentPhD, universityMalaga).
grant(User, gramService, create, free mathlib) ← cred(User, researchSenior, universityMalaga).

grant(User, gramService, create, devel mathlib) ← grant(User, gramService, create, free mathlib).
grant(User, gramService, create, comm mathlib) ← grant(User, gramService, create, free mathlib),

cred(User, ieeeEnrollment, ieeeInc).
grant(User, gramService, create, comm mathlib) ← cred(User, visaCard, bankRoma),

cred(User, ssn, governmentAuth).
Credential Policy:
cred(computerCenter, affiliation, governmentAuth) ← cred(User, employee, anEmployer).
cred(computerCenter, visaConfirmed, visaEurope) ← .
Disclosure Policy:
cred(User, studentPhD, universityMalaga) ← .

cred(User, researchSenior, universityMalaga) ← .
cred(User, ieeeEnrollment, ieeeInc) ← .
cred(User, visaCard, bankRoma) ← .
cred(User, ssn, governmentAuth) ← .

cred(User, employee, anEmployer) ← .

USER SECURITY POLICIES:
Credential Policy:
cred(marioRossi, visaCard, bankRoma) ← cred(Rprovider, visaConfirmed, visaEurope).
cred(marioRossi, ssn, governmentAuth) ← cred(Rprovider, affiliation, governmentAuth).

cred(marioRossi, employee, anEmployer) ← .
Disclosure Policy:
cred(Rprovider, visaConfirmed, visaEurope) ← .
cred(Rprovider, affiliation, governmentAuth) ← .

Fig. 6 Example of security policies for coarse-grained authorization

Behavioral Policy:

SF := {/usr/free/mathlib.jar}
SC := {/usr/comm/mathlib.jar}
SD := {/usr/devel/mathlib.jar}
OF := false
OC := false

[(OC == false),in(x0,SF),property(User, non profit),eq(x1, READ)].open(x0,x1,-,fdf)
OF:=true.
i([eq(x3, fdf)].read(x3, -, -, -)).
[eq(x7, fdf)].close(x7, -)

[(OF == false),in(x9, SC),property(User, commercial),eq(x10, READ)].open(x9,x10,-,fdc)
OC:=true.
i([eq(x12, fdc)].read(x12, -, -, -)).
[eq(x16, fdc)].close(x16, -)

[(OC == false),in(x18, SD),property(User, trusted),eq(x19, READ)].open(x18,x19,-,fdd)
OF:= true.
i([eq(x22, fdd)].read(x22, -, -, -)).
[eq(x26, fdd)].close(x26, -)

[in(x28, “/tmp/”)].open(x28,x29,-,fdu)
i([eq(x31, fdu)].read(x31, -, -, -)

or
[eq(x32, fdu)].write(x32, -, -, -)).

[eq(x33, fdu)].close(x33, -)

Property Policy:
property(User, non profit) ← cred(User, studentPhD, universityMalaga).
property(User, non profit) ← cred(User, researchSenior, universityMalaga).

property(User, commercial) ← property(User, non profit), cred(User, ieeeEnrollment, ieeeInc).
property(User, commercial) ← cred(User, visaCard, bankRoma).

property(User, trusted) ← property(User, non profit), behav cred(User, well behaved).
property(User, trusted) ← property(User, commercial), behav cred(User, well behaved).

Fig. 7 Example of security policies for fine-grained monitoring

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 15

properties such as non profit, commercial and specific
temporal property such as trusted (by behavior of one’s
application) user. Before opening each of the three li-
braries, the behavioral policy consults the property pol-
icy for external validation if a user satisfies a given prop-
erty. This validation is done based on the behavior of a
user and credentials acquired during a trust negotiation
process on the coarse-grained level.

The property policy defines that a non-profit user,
according to the high-level credential requirements, is
an entity having a credential attesting that it is either
a PhD student or a senior researcher at the University
of Malaga. A commercial user is defined as being a non-
profit user and holding a credential for an IEEE mem-
bership. A commercial user is also an entity having a
credential for a visa card. We note that the user prop-
erty definitions on the fine-grained level are implicitly
encoded on the coarse-grained level. The explicit encod-
ing on the fine-grained level allows us to control if an
application uses the computational resources according
to its user’s privileges. However, looking at the last def-
inition, a trusted (by behavior) user is defined as any
commercial or non-commercial user whose applications
have not violated the behavioral policy for a pre-defined
time slot, i.e., identified as well-behaved. Here, the be-
havioral credential for well-behaved user is in accordance
to the behavioral logic, and generated by the Behavioral
PDP (see section 5.2). The synergy of coarse- and fine-
grained credential definitions implies a flexible control
process on the fine-grained level.

One would ask if not keeping coarse-grained access
and fine-grained property policies in a unified policy. In
some scenarios this could be well the case, but however,
in a general case, fine-grained property policy defines
user specific properties based on a user profile of avail-
able credentials mixed with temporal behavioral creden-
tials reflecting the user past behavior. The user property
definitions and the behavioral credentials are only rele-
vant to the fine-grained level and have no impact on the
coarse-grained level.

In our scenario, the difference of coarse- and fine-
grained security control is that on the coarse-grained
level the security policies define access to the developer
and free version of the computational libraries by the
same set of required credentials (do not differentiate them),
but the fine-grained security policies refine access to the
developer library to those users qualified as trusted (by
the behavior of one’s application).

8 Prototype Integration in Globus

Our authorization framework was integrated into the
Globus Toolkit version 4 (GT4). The default authoriza-
tion system adopted by GT4 is the GridMapAuthzSer-
vice. The GridMapAuthzService checks if the Distin-
guished Name (DN) of a user requesting a service is

among a predefined list. However, additionally, Globus
allows service providers to define alternative authoriza-
tion systems that best suit their needs. The Open Grid
Forum Authorization working group has defined a stan-
dard [52] for plugging in third-party authorization ser-
vices, that requires the new authorization system to be
run as a Globus service and the communication protocol
between the authorization service and the Globus con-
tainer must conform to the SAML protocol of requesting
authorization assertion and responding to them (rf. Fig-
ure 1).

We integrated our coarse-grained authorization ser-
vice exploiting this mechanism, called SAMLAuthzCall-
out, and we created an authorization chain that includes
the GridMapAuthzService and our authorization service.
The authorization service contains the negotiation en-
gine. Respectively, a Grid user also maintains the autho-
rization module and negotiation engine for mutual trust
negotiations. The Globus user loads and initializes the
authorization module on request. The negotiation pro-
cess including network support and messages delivery
between the trust negotiation nodes was implemented
apart from the Globus transportation channels and uses
SSL socket connection. Message exchanges in the proto-
col were custom-defined and optimized for efficient mes-
sage delivery.

To implement the fine-grained controls, we integrated
some components of our authorization system within the
GRAM service. First we extended the standard Globus
job description schema to define a new job type, the java
one. In this way, to execute a Java application the Grid
user specifies java as a job type in its job request. Sec-
ond, we defined an alternative scheduling system that in
case of a Java application executes it on our customized
JVM, and we configured the Managed Job Service (MJS)
component of the GRAM service to invoke this scheduler
instead of the standard one. The standard error stream
is used in order to return to Grid users error messages
when an application has been stopped because of a se-
curity policy violation. The standard Globus mechanism
to transfer files, i.e. GridFTP, is exploited to send to the
remote Grid user the log file with the error description.

The Behavioral PDP interacts with the GRAM ser-
vice in order to get the job request submitted by the re-
mote Grid user. This interaction is simply implemented
through an XML file that is generated by the GRAM
service before invoking the security enhanced JVM. The
file name is passed to the JVM as an input parameter
and the JVM, in turn, passes it to the Behavioral PDP.
The Behavioral PDP reads from this file the resource
requirements in the job request which will be enforced
during execution. The Behavioral PDP also imports from
Globus the user DN extracted from the proxy certificate
that has been submitted by the user.

The Behavioral PDP gets from the GRAM service
the job request submitted by the remote Grid user. This
interaction is simply implemented by the new scheduler

16 Hristo Koshutanski et al.

that invokes the security enhanced JVM passing the job
request as an input parameter and the JVM, in turn,
passes it to the Behavioral PDP. The Behavioral PDP
reads from the job request the resource requirements
(e.g. max execution time or max memory) that will be
enforced during the application execution. The Behav-
ioral PDP also imports from the job request the user
DN.

The Behavioral PDP is activated by the JVM ev-
ery time a Java application wants to perform an inter-
action with the underlying resource. This has been im-
plemented by modifying the implementation of the Java
core classes, i.e. the classes that manage the interactions
with the underlying resource. In particular, these classes
have been modified by substituting the invocations to
the system libraries functions which perform the secu-
rity relevant system calls with invocation to a proper
set of wrapper functions we defined. The execution of
external code through the Java Native Interface (JNI)
[32] has been disabled, since it allows interactions with
underlying resource through external libraries (e.g., non
java-based ones). A wrapper function first activates the
Behavioral PDP to perform the security checks before
the execution of the security relevant system call and
suspends itself (i.e. suspends the JVM). Then, after the
Behavioral PDP reactivates the wrapper function, the
last enforces the Behavioral PDP decision by either ac-
tually invoking the system library function or by inter-
rupting the application execution. When the system li-
brary function has been executed the wrapper function
activates the Behavioral PDP again to perform security
checks after the system call execution. The interactions
between the Behavioral PDP and the JVM are imple-
mented by using semaphores and shared variables.

The Behavioral PDP invokes the Property PDP as
an external library function. The interactions between
the two components have a critical impact on the mon-
itoring performance. Since the Property PDP has been
implemented in Java but the Behavioral PDP in C we in-
voke the Property PDP without loading the JVM every
time. We use the Java Native Interface (JNI) library that
allows us to invoke Java methods from inside a C code.
As a part of the functionality of this library, we have
a special command that explicitly loads the JVM when
needed for a Java class execution, and also commands to
obtain links to a Java class and its methods (in our case
the Property PDP main class). In this way, at initializa-
tion time, the Behavioral PDP loads the JVM, creates
links to the the Property PDP methods, and keeps them
in memory for all subsequent invocations. When the Java
application, being monitored, terminates the Behavioral
PDP releases the JVM and then terminates.

Fig. 8 Grid usage trust negotiation scenarios

9 Prototype Performance Evaluation

The section outlines the experiments we performed to
evaluate the impact on the adoption of our framework.
We divide the experimental results in two parts: coarse-
grained and fine-grained time performance. We followed
the Grid usage scenario. All experimental trials were exe-
cuted on Pentium 4 with 2.8GHz and 1GB RAM running
Linux.

9.1 Coarse-grained Performance

We tested the negotiations overhead on coarse-grained
level based on the scenario presented in Section 7 and
by evaluating it with: (i) increased number of presented
credentials, (ii) increased number of negotiated (disclos-
able) credentials and (iii) simulated two extreme cases of
negotiation strategies giving us the boundaries of overall
possible negotiation timing.

We will first illustrate typical negotiation exchanges
and their time consumption against network delay, cer-
tificate validation and access decision. Figure 8 shows
two negotiation processes based on the presented Grid
usage scenario.

We divide a trust negotiation overhead into (rela-
tively independent) time cases:

– network delay for data transmission over SSL chan-
nel.

– certificate validation, verification and conversion to
data structures suitable for logic access decision. Cer-
tificate tokens are encoded as X.509 certificates.

– logic access decision evaluation based on security poli-
cies.

Figure 8(a) presents a simple negotiation scenario
with just few message exchanges. The client (Grid User)
requests to obtain access rights to the free mathlib li-
brary and the server (Computing Center) requires a PhD

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 17

student credential to grant access. The table below shows
the negotiation time (in milliseconds) of the different
cases.

network delay 83.2
certificate validation 14.0
access decision 101.5
overall time 287.0

The overall time is counted from the point when a client
initiated a request till the time the server replied with a
grant message. This time also includes the time for user
profile management such as profile generation, update
and deletion.

The logic access decision engine was called for access
decision evaluation three times - once on the client side
and twice on the server side. The submitted certificate
was validated once on the server side only.

We count overall negotiation time of all steps done
by both server and client sides. However, to calculate
time of concurrent processes we projected all processes
on one time line in order to accurately deal with over-
lapping time. For instance, for two concurrent processes
we update the overall time by the difference from the
earliest process started till the latest that ended.

Figure 8(b) shows a negotiation case with two con-
current negotiations (in concurrent threads), where one
of them is drawn in gray. The table below summarizes
the measured time performance (in milliseconds).

network delay 182.1
certificate validation 39.0

access decision 380.1
overall time 707.6

In this scenario, the logic access engine was called 10
times, 5 on each side, and the client validated 2 certifi-
cates while the server 3.

In either cases, the certificates validation and verifi-
cation had less time consuming part than the network
delay. The conclusion from the first part of the exper-
imentation is that the overall negotiation time is more
sensitive to network delay time than to certificate vali-
dation. The more interactions during a negotiation the
more influence the network delay will have on the over-
all negotiation. Absolute value of network delay time de-
pends also on the size of the data to be processed. There
was no direct way to manage and reduce this value for
the given scenario.

The access decision time had the most impact on the
overall authorization process. Looking at Figure 2, the
access decision depends on two main computations: de-
duction part (based on the access policy and client’s set
of credentials) and abduction part (based on the access
policy, client’s set of credentials and the set of disclos-
able credentials/hypotheses). We performed two sets of
experiments to analyze the access decision behavior with
respect to the two logic computations. We used the Grid
usage scenario in Figure 8(b) and its security policies (rf.
Figure 6) for the experiments.

 logic access decision time
 overall access decision time

10 20 30 40
0

30

60

pushed certificates

tim
e,

 m
s

Fig. 9 Authorization service performance with increased
number of pushed credentials

First set of experiments focused on measuring ac-
cess decision time of deduction computation versus an
increased number of pushed certificates to be verified,
validated and transformed to logic facts. Technically, a
client pushes visaCard and ssn certificates along with
other artificially generated certificates to get access to
the computational library. For this purpose we gener-
ated additional X.509 certificates that in combination
with the two from the scenario formed the different tests.
Figure 9 shows the access decision performance measured
in milliseconds.

The server invoked the logic access engine only once
on each trial and replied with grant decision. The aver-
age time for the logic access decision almost remained
the same while the number of pushed certificates was in-
creased from 10 to 35. The average time was calculated
based on 10 repeating measurements on each trial. The
measurement error is presented by a cursor arrow on the
top of the columns.

The conclusion from the experimentation was that
the logic access decision took approximately half of the
overall time and did not change during the trials. While,
the certificate validation and network delay time (in-
cluded in the overall decision time) increased during the
trials and equally influenced to the overall performance.

Second set of experiments was focused on the pull
model where the server determines what credentials are
required to establish trust. Here, the disclosure policy
determines what credentials are disclosable (available) so
that abduction reasoning finds those that are necessary
to grant a service request.

We used the scenario of Figure 8(b) but this time
we modified the disclosure policy (by adding new logic
rules) on the server side so that the set of disclosable
credentials feed to the abduction reasoning increased on
each trial.

Figure 10 shows the set of measurements performed.
On each trial the server computed visaCard and ssn cre-
dentials as missing credentials returned to the client. The

18 Hristo Koshutanski et al.

 logic access decision time
 overall access decision time

6 8 10 12 14 16 18 20
0

20 000

40 000

60 000

80 000

100 000

120 000

tim
e,

 m
s

disclosable credentials

9 10 11 12 13 14
0

2 000

4 000

Fig. 10 Authorization service performance dependence on
the disclosure policy

4 8 12 16 20

1500

3000

4500

6000

7500

ti
m

e,
 m

s

number of submitted credentials

Fig. 11 Time bounds for trust negotiations

access decision time on every trial was very sensitive and
varied considerably to the number of disclosable creden-
tials (i.e., a number of logic rules in the server’s disclosure
policy). The performed tests measured the logic access
decision time versus overall decision time.

Abduction reasoning time grew exponentially with
increasing disclosable credentials from 9 to 19. With 19
hypotheses (disclosable credentials) the logic engine took
approximately 2 minutes (99.7% of the overall time) to
compute the missing credentials. Here, the impact of
network delay and certificate validation onto the overall
time became completely negligible. We expect at around
12 disclosable credentials as a reasonable threshold (ap-
proximately a second) for a decision. However, such a
limitation also depends on possible negotiation strate-
gies and negotiation session validity. We refer the reader
to [11] for in deep analysis and results on abduction prob-
lems and complexity.

Next and last set of experiments we performed was on
the time performance of the negotiation protocol with re-
spect to possible negotiation strategies in terms of num-
ber of client-server interactions.

The sequence of credential exchange during a negoti-
ation process is controlled by negotiation strategies [54,
55]. One can adopt variety of negotiation strategies and
privacy settings [59,42,60,7,48,5] depending on creden-
tial sensitivity, on familiarity with the opponent or do-
main/environment, type of resources being negotiated
upon etc.

The proposed negotiation protocol serves as a policy
enforcement engine over the access and disclosure poli-
cies of an opponent, i.e. the protocol is data-driven by
the deduction and abduction reasoning. In that sense,
on top of the missing credentials computed one can ad-
ditionally impose a strategy controlling the disclosure of
these credentials. Here we note that such a strategy could
be encoded directly in the disclosure policy (in [26] the
authors define a stepwise reasoning on the disclosure pol-
icy structure) so that the protocol enforces the strategy
directly. We also note that multiple disclosure policies
can be defined for a given access policy thus encoding
different possible strategies.

Since strategies depend on multiple factors and may
take different sequences of credential exchange, so the
goal we approach is to analyze the time boundaries the
negotiation protocol performs by abstracting from a spe-
cific strategy. Essentially, we wanted to examine the pro-
tocol behavior on two extreme negotiation modes with
the possibility of concurrent credential negotiations.

Figure 11 shows the time area resulted from our ex-
perimentations where all negotiation strategies, our pro-
totype can perform, fall into.

The upper time bound, named as mutual suspicious
mode, is implied by a stepwise disclosure of credentials
where each entity discloses missing credentials consecu-
tively one after the other. Thus, one credential by the
server side and one by the client side in response, where
the next credential is requested (negotiated) if the pre-
vious negotiation has been completed. The negotiation
process is run in a single system thread on a client side
and on a server side without any concurrent requests.

We assume the following negotiation scenario of this
mode. A client and a server have the same number of 11
credentials protecting sensitive resources. We chose 11
credentials to obtain a reasonable abduction computa-
tion close to the estimated threshold noted above. The
client requests for a resource with no input of creden-
tials. The server computes number N of missing cre-
dentials (N ≤ 11) and negotiates on them in suspicious
mode. For each of the missing credential the client has a
counter request with a credential to the server side. The
server grants the requested credential and the client, on
its turn, grants the respective credential to the server.

In this way, for each of the server’s credential we
model a negotiation round where the client runs abduc-
tion reasoning to find a missing credential and success-
fully negotiates on it. The negotiation scenario has N +1
invocation of abduction reasoning over fixed number of
11 hypotheses in any test.

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 19

The opposite to suspicious mode, is the mutual greedy
mode of negotiations. This mode results in the bottom
time bound in the figure. The minimum time for negotia-
tion is determined by the strategy that implies complete
disclosure of missing credentials in one round by client
and by server side. Greedy mode utilizes multi-threaded
concurrent exchange of missing credentials on each side.

To obtain the minimum negotiation time, we modify
the above scenario with the assumption that the client
and the server have recently been in contact for that re-
source and, being in greedy mode, the client along with
the request for the resource runs N requests for the cre-
dentials necessary to grant server’s N missing creden-
tials. On receiving request for a resource, the server runs
N threads requesting the missing credentials. In this sce-
nario, we avoid client running abduction reasoning but
only deduction to check if server’s requests are granted
by the already run client’s requests.

In the greedy mode, the client and server run 2N sys-
tem threads, while in the suspicious mode they run only
2 system threads. In greedy mode we loose in memory
but profit in execution time.

Figure 11 illustrates how with increasing 1 ≤ N ≤ 11
the two extreme modes perform in time. All possible ne-
gotiations lie in the hatched area. On x-axis we show
the total number of credentials necessary to complete a
negotiation process, where half of the credentials are re-
quested by the server and the other half by the client
side. With total of 22 credentials (the server and client
ask each other for 11 credentials) any negotiation strat-
egy would remain within 1.5 to 7.5 seconds. With 8 cre-
dentials the overall negotiation time is bound by 0.9 and
3.7 seconds.

In the following we briefly relate our results with
those reported for the Traust service scenario [27, pp
14–16]. In the Traust scenario there are two subsequent
negotiation sessions: one to disclose the request to access
an information portal and one to access the portal as a
rescue dog handler. The authors report an average exe-
cution time of the whole scenario to 4.04 seconds with
total of nine disclosed credentials. In our case, the sce-
nario in Figure 8(a) approximates the interactions of the
first negotiation of the Traust scenario, while the mutual
suspicious mode with total of 8 credentials approximates
(upper bound) the message exchanges of the second ne-
gotiation phase. Our average time (sum of the two ne-
gotiations) to simulate the scenario would be an average
of 4 seconds. Although, we experimented with slightly
faster CPUs the obtained results shown that our system
performs comparably to that of Traust.

Summary of experiments. We evaluated the overhead
of trust negotiations on the coarse-grained level against
network delay, credential verification and access decision
time split in deduction and abduction reasoning. The
prototype implementation shown reasonable and afford-
able time performance. The protocol has more sensitivity
to network delay than to certificate validation. Deduc-

tion reasoning as part of the logic access decision has
more influence on the overall negotiation time than net-
work delay and certificate validation. The prototype per-
formance is foremost sensible to the number of disclos-
able credentials due to the abduction reasoning used as
part of the logic access decision.

To mitigate the exponential time growth of the com-
putation of missing credentials, one can divide and spec-
ify a single disclosure policy per resource so that the
system dynamically loads the relevant disclosure policy
on request.

An interesting idea in Bertino et al. [7] work, that
could be well used in our settings, is the use of trust tick-
ets. A trust ticket keeps information on recent successful
negotiations of credential exchange for a given resource.
Thus, if a trust ticket is introduced initially (during an
introductory phase) for the same resource then the nego-
tiation process can be speeded up, i.e. omitted negotia-
tions on those requirements indicated in the trust ticket.

9.2 Fine-grained Performance

The security checks performed by the fine-grained mon-
itoring support introduce an overhead in the application
execution time. The main factor concerning the execu-
tion overhead is if a java application performs more com-
putational operations with only few system calls – case
where the overhead of security monitoring is negligible
with respect to the overall execution time, or if an appli-
cation mainly performs system calls – case where security
checks impacts on the overall time.

The test presented in this section evaluates the exe-
cution time of a Java application by adopting a standard
JVM and a security enhanced JVM with the Behavioral
and Property PDPs. In particular, we adopted the Jikes
RVM Java Virtual Machine developed by the IBM T. J.
Watson Research Center [2] run on Linux operating sys-
tem. This JVM has been modified to embed our security
support.

The test scenario is the one described in Section 7,
where the Java application submitted by the Grid user
exploits an utility library. In this case, the utility library
consists of a collection of benchmarks that belong to the
Ashes Suite Collection benchmarks3. In particular, user’s
remote application uses a library to convert an mp3 file
to a wav one. Both, the Grid user’s application and the
utility library, were monitored by our system. System
calls defined by the policy are (rf. Figure 7): read the
library, read an input file (in mp3 format), and write a
result file (in wav format). This application is well-suited
for our test because it performs a large number of secu-
rity relevant system calls during its execution: around
1500 calls for about 5 seconds.

The fine-grained system controls if a user submitted
the application has a proper set of credentials to open the

3 http://www.sable.mcgill.ca/ashes

20 Hristo Koshutanski et al.

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����

����
����
����
����

��
��
��
��

���
���
���
��� ����

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����

���
���
���
���

����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

 5600

 5800

 6000

 6200

 6400

m
ill

is
ec

s

without monitoring
behavior PDP

behavior + property PDP

Fig. 12 Fine-grained monitoring performance

requested utility library, and if access to the library and
to the data files is according to the admitted behavior.

Figure 12 shows the results of the evaluation as an
average of ten trials. The average execution time of the
library without any security control is 5680 milliseconds,
while the execution time with the enforcement of the
behavioral policy only is 5720 milliseconds, and the exe-
cution time with the enforcement of both the behavioral
and the user property policies is 6130 milliseconds. The
Behavioral PDP has been invoked 1489 times, while the
Property PDP has been invoked only 1 time - when the
application opened the utility library file. The overhead
introduced by the Behavioral PDP is about 1%, while
the overhead by the Behavioral and Property PDPs is
about 8% of the application execution time.

The results shown the practical aspects of the Be-
havioral PDP while the Property PDP shown that the
system overhead is sensitive against logic access deci-
sions at this level. A possible solution to mitigate the
overhead is to encapsulate the behavioral and property
policies, and refine a common policy framework and its
evaluation that handles both sides requirements.

10 System Architecture Security Analysis

This Section discusses the security aspects of the sys-
tem architecture and its components. The purpose of
the analysis is to show, in a rather informal way, what
potential treats the system mitigates, and how its archi-
tectural components provide security and trust to the
overall framework.

First, we discuss the coarse-grained level security.
Globus container and trust negotiation engine are the
components of the framework that face external inter-
actions (from outside). Globus container is accessed by
Grid user to submit applications for execution. The secu-
rity between Globus container and Grid User platform
is discussed in Globus specification [14]. In this paper,
we assume that this communication channel is secured
by means of [14] to provide confidentiality and integrity
of authorization requests and authorization decisions be-
tween Globus container and Grid user. Trust negotiation

engine, instead, is accessed by trust negotiation client to
perform credentials exchange and negotiations. In this
case, security is achieved through the use of the SSL pro-
tocol. Grid user and resource provider authenticate each
other and establish SSL connection using certified pub-
lic keys issued by trusted authorities. We assume that
communications over SSL are sufficiently secure for our
model. Thus, Grid user and resource provider achieve
confidentiality and integrity of authorization messages
and credentials transmitted during trust negotiations.
Credentials encode attributes of peers, and are digitally
signed by trusted authorities.

Credentials are compliant with X.509 (v3) attribute
certificate standard. All credentials are associated with
a particular identity (public key) presented for the SSL
handshake to proof their ownership, and vanish fake cre-
dentials. We have addressed a verification issue of cer-
tificates that may expire during a negotiation process.
During a negotiation process some of the already pre-
sented credentials may expire before the negotiation is
completed. To deal with that, the credential manager
(refer to Section 3) keeps two sets of user profiles: raw
X.509 certificates, and their logic based equivalent. The
former one is re-evaluated on any negotiation step to be
performed (i.e., before an access decision is taken), so
that if any of the presented certificates expires the nego-
tiation engine aborts the negotiation process.

Unfortunately, trust negotiation might become a sub-
ject of denial-of-the-service attacks since it is a relatively
heavy computational process (due to its design nature).
Anyway, one could define a short enough bounded ses-
sion time for a round of negotiations to mitigate this kind
of attacks. When the session time expires, the session au-
tomatically is terminated. Finally, for the coarse-grained
level we need secure communications between our Autho-
rization service and the Globus container. In the current
implementation, we define these components to reside
on a same node and, consequently, confidentiality and in-
tegrity of access requests and authorization decisions are
preserved. In case where the authorization service resides
on a remote node, security for the interactions between
the Globus container and the authorization service can
be achieved through the standard GSI mechanisms.

On the fine-grained level, all security threats (e.g. to
subvert system functionality and block up computational
resources) come from applications executed by the com-
putational service. An application executed on a Grid
platform can not perform dangerous or forbidden oper-
ations on platform’s resources, since every action per-
formed by the application is intercepted and checked
before the actual execution. Moreover, the application
cannot bypass the monitoring mechanism, because the
Behavioral PEP was integrated inside the JVM, and the
execution of the application is completely mediated by
the JVM. Additionally, we disabled the Java Native In-
terface support for executing arbitrary code from a Java
application.

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 21

We also emphasize on the importance of trust be-
tween policy decision and enforcement components on
the fine-grained level. We define that the Property PDP
and the Behavioral PDP components (evaluating and
enforcing fine-grained security policies) are settled on a
same platform and are not accessible from outside. Thus,
interactions between them is considered as trusted, and
confidentiality and integrity of access requests and au-
thorization decisions are guaranteed. Finally, integrity
of data used on, both, coarse- and fine-grained levels,
such as policies, user profiles, credentials, is preserved
by placing them into a secure local storage (not accessi-
ble by ordinary applications).

11 Conclusions and Future Work

We have presented a system for enhancing Grid security
by integrating a negotiation-based authorization service
for dynamic access rights establishment with a resource
monitoring and enforcement service for fine-grained ap-
plication behavioral control. We have also presented sys-
tem architecture, functional description, implementation
and performance evaluation. The implementation and
experimental results shown the scope and practical as-
pects of the system. Out of the evaluation results, we
have concluded the following main issues:

– the importance of well-designed coarse-grained access
and disclosure policies for efficient negotiation. The
main factor (posing an upper-bound) is the number of
potentially disclosable credentials for a given service.

– the importance of well-integrated behavioral and prop-
erty policies for fine-grained enforcement. The main
factor here is the intensity of performed system calls
and (user) property evaluation.

A prerequisite for adoption of the system is the defi-
nition of high-level tools for policy specification and au-
tomated translation to their formal representation. We
refer the reader to ASP RuleML4 for an approach that
adapts high-level RuleML5 language to express answer-
set programs and its automated transformation to logic
programs. One can define coarse-grained security poli-
cies in RuleML language with the help of GUI for XML
editing and generation, and perform an automated trans-
formation to their respective logic program format. Also
this tool can be used for defining and integrating the
property policy requirements with those of behavioral
policy model.

An alternative solution to the policy specification
problem could be the adoption of the eXtensible Access
Control Markup Language (XACML) [58] as a policy
language. XACML is a widely used standard for defining
authorization policies. It is well-known by system admin-
istrators, and supported by a large community of users.

4 http://www.kr.tuwien.ac.at/staff/roman/aspruleml
5 http://www.ruleml.org

There are available tools supporting system administra-
tors in writing security policies, such as the graphical
policy editor UMU-XACML-Editor6.

We also point out the importance of a model-driven
approach for policy transformation from high-level defi-
nitions to fine-grained policy specification (refinement),
for example [44].

Future work has several potential directions. One di-
rection is to apply the prototype implementation on real
test-beds where one can evaluate its performance on prac-
tical case studies, including real-world Grid security poli-
cies and fine-grained monitoring requirements. Second
direction is to apply the system model to the domain
of Virtual Organizations. Re-designing the fine-grained
behavioral and property policies into one unified pol-
icy framework for improving its evaluation performance.
Defining suitable semantic characterization of a new pol-
icy framework allowing for effective policy and trust man-
agement by both platform owners and third-party providers
(VO partners). Third direction is to research on how the
coarse-grained authorization can be generalized to han-
dle interoperability of negotiations with the other negoti-
ation systems in Grid such as TrustBuilder [56], Trust-X
[7], or PeerTrust [37].

References

1. Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L.,
Frohner, A., Lőrentey, K., Spataro, F.: From gridmap-file
to voms: managing authorization in a grid environment.
Future Gener. Comput. Syst. 21(4), 549–558 (2005).

2. Alpern, B., Attanasio, C., Barton, J., et al.: The jalapeño
virtual machine. IBM System Journal 39(1), 211–221
(2000)

3. Apt, K.: Logic programming. In: J. van Leeuwen (ed.)
Handbook of Theoretical Computer Science. Elsevier
(1990)

4. Barton, T., Basney, J., Freeman, T., Scavo, T., Sieben-
list, F., Welch, V., Ananthakrishnan, R., Baker, B.,
Goode, M., Keahey, K.: Identity federation and attribute-
based authorization through the globus toolkit, shibbo-
leth, gridshib, and myproxy. In: 5th Annual PKI R&D
Workshop (2006)

5. Baselice, S., Bonatti, P.A., Faella, M.: On interoperable
trust negotiation strategies. In: Proceedings of IEEE In-
ternational Workshop on Policies for Distributed Systems
and Networks (POLICY’07), pp. 39–50. IEEE Computer
Society (2007)

6. Becker, M.Y., Nanz, S.: The role of abduction in declar-
ative authorization policies. In: Proceedings of the 10th
International Symposium on Practical Aspects of Declar-
ative Languages (PADL’08), LNCS. Springer (2008)

7. Bertino, E., Ferrari, E., Squicciarini, A.C.: Trust-X: A
peer-to-peer framework for trust establishment. IEEE
Transactions on Knowledge and Data Engineering 16(7),
827–842 (2004)

8. Chadwick, D.W., Otenko, A.: The PERMIS X.509 role-
based privilege management infrastructure. In: Seventh
ACM Symposium on Access Control Models and Tech-
nologies, pp. 135–140. ACM Press (2002).

6 http://xacml.dif.um.es

22 Hristo Koshutanski et al.

9. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C.,
Tuecke, S.: The data grid: Towards an architecture for the
distributed management and analysis of large scientific
datasets. Journal of Network and Computer Applications
23, 187–200 (2001)

10. Constandache, I., Olmedilla, D., Siebenlist, F.: Policy-
driven negotiation for authorization in the grid. In: Pro-
ceedings of the Eighth IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY
’07), pp. 211–220. IEEE Computer Society (2007).

11. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic
programs: Semantics and complexity. Theoretical Com-
puter Science 189(1-2), 129–177 (1997)

12. Fang, L., Gannon, D., Siebenlist, F.: XPOLA: An ex-
tensible capability-based authorization infrastructure for
grids. In: Forth Annual PKI Workshop: Multiple Paths
to Trust. NIST (2005)

13. Feller, M., Foster, I., , Martin, S.: Gt4 gram: A func-
tionality and performance study. In: Proceedings of the
Teragrid 2007 Conference. Madison, WI, USA (2007)

14. Foster, I.: Globus toolkit version 4: Software for service-
oriented systems. In: Proceedings of IFIP International
Conference on Network and Parallel Computing, pp. 2–
13. Springer-Verlag, LNCS 3779 (2005)

15. Foster, I., Kesselman, C.: The Grid: Blueprint for a
Future Computing Infrastructure, chap. Computational
Grids. Morgan Kaufmann (1998)

16. Foster, I., Kesselman, C., Pearlman, L., Tuecke, S.,
Welch, V.: A community authorization service for group
collaboration. In: Proceedings of the 3rd IEEE Int. Work-
shop on Policies for Distributed Systems and Networks
(POLICY 02), pp. 50–59 (2002)

17. Foster, I., Kesselman, C., Tsudik, G., Tuecke, S.: A secu-
rity architecture for computational grids. In: Proceedings
of the 5th ACM conference on Computer and communi-
cations security (CCS’98), pp. 83–92. ACM (1998)

18. Hoare, C.A.R.: Communicating sequential processes.
Communications of the ACM 21(8), 666–677 (1978).
DOI http://doi.acm.org/10.1145/359576.359585

19. Hofmeyr, S.A., Somayaji, A., Forrest, S.: Intrusion detec-
tion using sequences of system calls pp. 151–180 (1998)

20. Kapadia, A., Sampemane, G., Campbell, R.H.: KNOW
why your access was denied: regulating feedback for us-
able security. In: Proceedings of the 11th ACM confer-
ence on Computer and Communications Security, pp. 52–
61. ACM Press, New York, NY, USA (2004)

21. Keahey, K., Welch, V.: Fine-grain authorization for re-
source management in the grid environment. In: GRID
’02: Proceedings of the Third International Workshop on
Grid Computing - LNCS, vol. 2536, pp. 199–206 (2002)

22. Keahey, K., Welch, V., Lang, S., Liu, B., Meder, S.: Fine-
grained authorization for job execution in the grid: design
and implementation: Research articles. Concurr. Com-
put. : Pract. Exper. 16(5), 477–488 (2004).

23. Koshutanski, H., Martinelli, F., Mori, P., Borz, L., Vac-
carelli, A.: A fine-grained and X.509-based access control
system for Globus. In: Proceedings of the International
Symposium on Grid computing, high-performAnce and
Distributed Applications (GADA’06). Springer-Verlag
press, Montpellier, France (2006)

24. Koshutanski, H., Martinelli, F., Mori, P., Vaccarelli, A.:
Fine-grained and history-based access control with trust
management for autonomic grid services. In: Proceed-
ings of the 2nd International Conference on Autonomic
and Autonomous Systems (ICAS’06). IEEE Computer
Society, Silicon Valley, California (2006)

25. Koshutanski, H., Massacci, F.: Interactive access control
for autonomic systems: from theory to implementation.
ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS) (to appear)

26. Koshutanski, H., Massacci, F.: A negotiation scheme for
access rights establishment in autonomic communication.
Journal of Network and System Management (JNSM)
15(1) (2007)

27. Lee, A.J., Winslett, M., Basney, J., Welch, V.: The traust
authorization service. ACM Transactions on Information
and System Security (TISSEC) 11(1), 1–33 (2008).

28. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob,
G., Perri, S., Scarcello, F.: The dlv system for knowl-
edge representation and reasoning. ACM Transactions
on Computational Logic (2006). Available via url
http://www.arxiv.org/ps/cs.AI/0211004

29. Lepro, R.: Cardea: Dynamic access control in distributed
systems. In: NAS Technical Report NAS-03-020. NASA
Advanced Supercomputing (NAS) Division (2003)

30. Li, J., Cordes, D.: A scalable authorization approach for
the globus grid system. Future Gener. Comput. Syst.
21(2), 291–301 (2005).

31. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a
role-based trust-management framework. In: Proceedings
of the 2002 IEEE Symposium on Security and Privacy,
pp. 114–130. IEEE Computer Society (2002)

32. Liang, S.: Java(TM) Native Interface: Programmer’s
Guide and Specification. Addison-Wesley (1999)

33. Lorch, M., Adams, D.B., Kafura, D., Koneni, M.S.R.,
Rathi, A., Shah, S.: The PRIMA system for privilege
management, authorization and enforcement in grid en-
vironments. In: Proceedings of the Fourth International
Workshop on Grid Computing, p. 109. IEEE Computer
Society (2003)

34. Martinelli, F.: Towards an integrated formal analysis for
security and trust. In: FMOODS, pp. 115–130 (2005)

35. Martinelli, F., Mori, P., Vaccarelli, A.: Towards contin-
uous usage control on grid computational services. In:
Proceedings of Joint International Conference on Auto-
nomic and Autonomous Systems and International Con-
ference on Networking and Services (ICAS-ICNS 2005),
IEEE Computer Society, p. 82 (2005)

36. Nefedova, V., Jacob, R., Foster, I., Liu, Z., Liu, Y., Deel-
man, E., Mehta, G., Su, M.H., Vahi, K.: Automating
climate science: Large ensemble simulations on the Ter-
aGrid with the GriPhyN virtual data system. In: Pro-
ceedings of the Second IEEE International Conference on
e-Science and Grid Computing (E-SCIENCE’06), p. 32.
IEEE Computer Society (2006).

37. Nejdl, W., Olmedilla, D., Winslett, M.: PeerTrust: Au-
tomated trust negotiation for peers on the semantic
web. In: VLDB Workshop on Secure Data Management
(SDM), Lecture Notes in Computer Science, vol. 3178,
pp. 118–132. Springer (2004)

38. Pearlman, L., Kesselman, C., Welch, V., Foster, I.,
Tuecke, S.: The community authorization service: Status
and future. Proceedings of Computing in High Energy
and Nuclear Physics (CHEP 03): ECONF C0303241
(2003)

39. Provos, N.: Improving host security with system call poli-
cies. In: SSYM’03: Proceedings of the 12th conference
on USENIX Security Symposium, pp. 257–272. USENIX
Association, Berkeley, CA, USA (2003)

40. Randall, D.A., Ringler, T.D., Heikes, R.P., Jones,
P., Baumgardner, J.: Climate modeling with spherical
geodesic grids. Computing in Science and Engineering
4(5), 32–41 (2002)

41. Saltzer, J.H., Schroeder, M.D.: The protection of infor-
mation in computer systems. Proceedings of the IEEE
63(9), 1278–1308 (1975)

42. Seamons, K., Winslett, M., Yu, T.: Limiting the disclo-
sure of access control policies during automated trust
negotiation. In: Proceedings of the Network and Dis-
tributed System Security Symposium (2001)

Enhancing Grid security by fine-grained behavioral control and negotiation-based authorization 23

43. Seamons, K., Winslett, M., Yu, T., Smith, B., Child, E.,
Jacobson, J., Mills, H., Yu, L.: Requirements for policy
languages for trust negotiation. In: Proceedings of the
3rd International Workshop on Policies for Distributed
Systems and Networks (POLICY’02), pp. 68–79. IEEE
Computer Society (2002)

44. Seehusen, F., Stølen, K.: A transformational approach to
facilitate monitoring of high-level policies. In: 9th IEEE
International Workshop on Policies for Distributed Sys-
tems and Networks (POLICY 2008), pp. 70–73. IEEE
Computer Society (2008)

45. Sekar, R., Bowen, T., Segal, M.: On preventing intrusions
by process behavior monitoring. In: ID’99: Proceedings of
the 1st conference on Workshop on Intrusion Detection
and Network Monitoring, pp. 29–40. USENIX Associa-
tion, Berkeley, CA, USA (1999)

46. Shanahan, M.: Prediction is deduction but explanation is
abduction. In: Proceedings of IJCAI’89, pp. 1055–1060.
Morgan Kaufmann (1989)

47. Spencer Jr. B. et al.: Neesgrid: A distributed collabo-
ratory for advanced earthquake engineering experiment
and simulation. In: 13th World Conf. on Earthquake En-
gineering (2004)

48. Squicciarini, A., Bertino, E., Ferrari, E., Paci, F., Thu-
raisingham, B.: PP-trust-X: A system for privacy pre-
serving trust negotiations. ACM Trans. Inf. Syst. Secur.
10(3), 12 (2007).

49. Stell, A.J., Sinnott, R.O., Watt, J.P.: Comparison of ad-
vanced authorisation infrastructures for grid computing.
In: Proceedings of High Performance Computing System
and Applications 2005, HPCS, pp. 195–201 (2005)

50. Thompson, M., Essiari, A., Keahey, K., Welch, V., Lang,
S., Liu, B.: Fine-grained authorization for job and re-
source management using akenti and the globus toolkit.
In: Proceedings of Computing in High Energy and Nu-
clear Physics (CHEP03) (2003)

51. Thompson, M., Johnston, W., Mudumbai, S., Hoo, G.,
Jackson, K., Essiari, A.: Certificate-based access con-
trol for widely distributed resources. In: Proceedings of
Eighth USENIX Security Symposium (Security’99), pp.
215–228 (1999)

52. Welch, V., Ananthakrishnan, R., Siebenlist, F., Chad-
wick, D., Meder, S., Pearlman, L.: Use of SAML for
OGSI Authorization. Global Grid Forum, Open Grid Ser-
vices Architecture Authorization Working Group (2005).
http://forge.gridforum.org/projects/ogsa-authz

53. Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Cza-
jkowski, K., Gawor, J., Kesselman, C., Meder, S., Pearl-
man, L., Tuecke, S.: Security for grid services. In: 12th
IEEE International Symp. on High Performance Dis-
tributed Computing (2003)

54. Winsborough, W., Seamons, K., Jones, V.: Automated
trust negotiation. In: Proceedings of DARPA Informa-
tion Survivability Conference and Exposition (DISCEX),
vol. 1, pp. 88–102. IEEE Press (2000)

55. Winslett, M.: An introduction to trust negotiation. In:
First International Conference on Trust Management
(iTrust’03), LNCS, vol. 2692, pp. 275–283. Springer
(2003)

56. Winslett, M., Yu, T., Seamons, K.E., Hess, A., Jacobson,
J., Jarvis, R., Smith, B., Yu, L.: Negotiating trust in the
web. IEEE Internet Computing 6(6), 30–37 (2002)

57. X.509: The directory: Public-key and attribute certificate
frameworks (2005). ITU-T Recommendation X.509:2005
| ISO/IEC 9594-8:2005

58. XACML: eXtensible Access Control Markup
Language (XACML) (2005). Www.oasis-
open.org/committees/xacml

59. Yu, T., Ma, X., Winslett, M.: Prunes: an efficient and
complete strategy for automated trust negotiation over
the internet. In: Proceedings of the 7th ACM conference

on Computer and communications security (CCS ’00),
pp. 210–219. ACM (2000).

60. Yu, T., Winslett, M., Seamons, K.E.: Supporting struc-
tured credentials and sensitive policies through interop-
erable strategies for automated trust negotiation. ACM
Transactions on Information and System Security (TIS-
SEC) 6(1), 1–42 (2003).

Hristo Koshutanski received
M.Sc. in Mathematics from
Plovdiv University ”Paisii
Hilendarski” in 2001 and
Ph.D. in Information and
Communication Technology
from University of Trento in
2005. He won the E-NEXT
SATIN award (The European
Doctoral School of Advanced
Topics In Networking) for
doctoral research in 2005 and
he was a lecturer at ESSLLI’05
European summer school. He
holds an EU Marie Curie EIF
post-doc fellowship with a host
institution the University of

Málaga for 2007–2009. His research interests include access
control models, trust management techniques for digital
credential negotiation, semantics of access control, digital
identity management. He has co-authored a number of
scientific papers.

Aliaksandr Lazouski re-
ceived M.Sc. in Electronics
from Belorussian State Uni-
versity in 2006. He is currently
a PhD student in computer
science department at the Uni-
versity of Pisa in collaboration
with IIT-CNR. His research
interests include access control
models, trust management,
usage control, digital rights
management.

Fabio Martinelli (M.Sc.
1994, Ph.D. 1999) is a senior
researcher of IIT-CNR. He
is co-author of more than 80
papers on international jour-
nals and conference/workshop
proceedings. His main research
interests involve security and
privacy in distributed and
mobile systems and founda-
tions of security and trust. He
serves as PC-chair/organizer
in several international con-
ferences/workshops. He is
the co-initiator of the Inter-
national Workshop series on
Formal Aspects in Security

24 Hristo Koshutanski et al.

and Trust (FAST). He is serving as scientific co-director
of the international research school on Foundations of
Security Analysis and Design (FOSAD) since 2004 edition.
He has been recently awarded by NATO as co-director for
a Advanced Training Course. He chairs the WG on security
and trust management (STM) of the European Research
Consortium in Informatics and Mathematics (ERCIM).
He usually manages R&D projects on information and
communication security and he is involved in several EU
projects.

Paolo Mori received M.Sc.
in Computer Science from the
University of Pisa in 1998,
and Ph.D. in Computer Sci-
ence from the same univer-
sity in 2003. He is currently
a researcher of IIT-CNR. He
is (co-)author of more than 20
papers on international jour-
nals and conference/workshop
proceedings. His main research
interests involve high perfor-
mance computing and security
in distributed and mobile sys-
tems. He is involved in sev-
eral EU projects on informa-

tion and communication secu-
rity (S3MS, GridTRUST).

