
9

Interactive Access Control for Autonomic
Systems: From Theory to Implementation

HRISTO KOSHUTANSKI and FABIO MASSACCI

University of Trento

Autonomic communication and computing is a new paradigm for dynamic service integration over

a network. An autonomic network crosses organizational and management boundaries and is pro-

vided by entities that see each other just as partners. For many services no autonomic partner may

guess a priori what will be sent by clients nor clients know a priori what credentials are required

to access a service.

To address this problem we propose a new interactive access control: servers should interact

with clients, asking for missing credentials necessary to grant access, whereas clients may supply

or decline the requested credentials. Servers evaluate their policies and interact with clients until

a decision of grant or deny is taken.

This proposal is grounded in a formal model on policy-based access control. It identifies the

formal reasoning services of deduction, abduction and consistency. Based on them, the work pro-

poses a comprehensive access control framework for autonomic systems. An implementation of the

interactive model is given followed by system performance evaluation.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls, information flow controls; K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms: Algorithms, Security

Additional Key Words and Phrases: Interactive access control, disclosure control, logic program-

ming, abduction, nonmonotonic policy, autonomic systems

ACM Reference Format:
Koshutanski, H. and Massacci, F. 2008. Interactive access control for autonomic systems: From

theory to implementation. ACM Trans. Autonom. Adapt. Syst. 3, 3, Article 9 (August 2008), 31

pages. DOI = 10.1145/1380422.1380424 http://doi.acm.org/10.1145/1380422.1380424

H. Koshutanski was supported by the Marie Curie Intra-European fellowship 038978-iAccess

within the 6th European Community Framework Programme. F. Massacci was partially supported

by the projects 2003-S116-00018 PAT-MOSTRO, 016004 IST-FP6-FET-IP-SENSORIA, and 27587

IST-FP6-IP-SERENITY.

Authors’ addresses: H. Koshutanski, Computer Science Department, University of Málaga, Cam-

pus de Teatinos, Málaga 29071, Spain; email: hristo@lcc.uma.es; F. Massacci, Dipartimento di

Ingegneria e Scienza dell’Informazione, Università di Trento, Via Sommarive 14, I-38050 Povo

(Trento), Italy; email: fabio.massacci@unitn.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1556-4665/2008/08-ART9 $5.00 DOI 10.1145/1380422.1380424 http://doi.acm.org/

10.1145/1380422.1380424

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:2 • H. Koshutanski and F. Massacci

1. INTRODUCTION

Controlling access to services is a key aspect of networking and the last few
years have seen the domination of policy-based access control. Indeed, the
paradigm is broader than simple access control and one may speak of policy-
based self-management networks (see Sloman and Lupu [1999]; Lymberopoulos
et al. [2003]; or the IEEE Policy Workshop series1). The intuition is that actions
of nodes controlling access to services are automatically derived from policies.
The nodes look at events, requested actions and credentials presented to them,
evaluate the policy rules according to those new facts and derive the actions
[Sloman and Lupu 1999; Smirnov 2003]. Policies can be simple iptables con-
figuration rules for Linux firewalls2 or complex logical policies expressed in
languages such as Ponder [Damianou et al. 2001] or a combination of policies
across heterogeneous systems as in the OASIS XACML3 framework.

Dynamic coalitions and autonomic communication add new challenges: an
autonomic network comprises nodes that are no longer within the boundary of
a single enterprise that could deploy its policies on each and every node and
guarantee interoperability. An autonomic network is characterized by proper-
ties of self-awareness, self-management and self-configuration of its constituent
nodes. In an autonomic network, nodes are like partners that offer services and
lightly integrate their efforts into one, hopefully coherent, network.

Since access to network services is offered by autonomic nodes on their own
and to potentially unknown clients, the decision to grant or deny access is based
on credentials sent by a client. Decentralized applications such as grid systems
require support of credentials issued by certificate authorities belonging to dis-
tinct administrative domains; require support of delegation of authority based
on certified attributes; require collection of credentials located on distributed
repositories. This aspect has emerged as the notion of distributed access control,
also referred in the literature as trust management [Weeks 2001].

Credentials themselves convey sensitive information and often become
subject to unauthorized misused and disclosure. Recent years have seen the
emergence of a new concept called trust negotiation [Seamons and Winsborough
2002; Winslett et al. 2002]. It is a policy-based technique that provides clients
with the right to protect their own credentials and to negotiate with servers,
access to those credentials. Thus trust negotiation allows two network entities
(nodes) to mutually establish requirements to access a resource by requesting
each other’s sensitive credentials until sufficient trust is established.

Although several efficient and powerful negotiation systems have been de-
veloped so far [Bonatti and Samarati 2002; Yu et al. 2003; Bertino et al. 2004;
Nejdl et al. 2004; Constandache et al. 2007], they focus on specific policy
definitions and evaluation of policy requirements. In contrast, we abstract
from specific policy settings and provide meta-level access control driven by
two logic reasoning services. The logical model presented in the article fills an
important gap between policy specification and enforcement. The meta-level

1http://www.policy-workshop.org
2See http://www.netfilter.org
3http://www.oasis-open.org/committees/xacml

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:3

approach allows us to cover a wide range of policy specifications (assuming dat-
alog compliant policy) having hundreds of rules, access constraints, complex
role hierarchies and nonmonotonic behavior.

In an autonomic communication scenario a client might have all the
necessary credentials to access a service but may simply not know it. Equally,
it is unrealistic to assume that servers will publish their security policies on
the Web so that clients can do policy evaluations themselves. So, it should be
possible for a server to ask a client on the fly for additional credentials, whereas
the client may disclose or decline to provide them. Next, the server re-evaluates
the client’s request, considering the newly submitted credentials, and computes
an access decision. The process iterates between the server and the client until
a final decision of grant or deny is taken. We call this modality interactive access
control.

Part of these challenges can be solved by using policy-based self-management
of networks but not all of them. Indeed, if we abstract away the details of the
policy implementation, one can observe that the only reasoning service that is
actually used by policy-based approaches is deduction: given a policy and a set
of additional facts find out all consequences (actions or obligations) from the
policy according to the facts. We simply look at whether granting the request
can be deduced from the policy and the current facts. Policies could be different
[Bertino et al. 2001; Li et al. 2003; Bonatti and Samarati 2002; Winslett et al.
2005; Li et al. 2005] but the kernel reasoning is the same.

Access control for autonomic communications needs another reasoning ser-
vice: abduction [Shanahan 1989]. Loosely speaking, we could say that abduction
is deduction in reverse: given a policy and a request to access a network ser-
vice we want to know what are the credentials (facts) that would grant access.
Logically, we want to know whether there is a possibly minimal set of facts that
added to the policy would entail (deduce) the request.

If we look again at our intuitive description of the interactive access control,
it is immediately seen that abduction is the core service needed by the policy-
based autonomic servers to reason for missing credentials.

1.1 Article Contribution

We present a model for reasoning about access control for autonomic commu-
nication. The model abstracts from a specific policy language and provides an
algorithm based on deduction and abduction reasoning services for policy eval-
uation and enforcement. The key aspect of the algorithm is that if a client
does not have enough access rights the algorithm computes on the fly, missing
credentials necessary for the client to get access. Thus a server interacts with
a client asking for possible solutions that unlock a service.

Further the article explores the interactive access control model from theo-
retical and practical aspects. It analyzes the behavior of the model when applied
to monotonic and nonmonotonic policies and against cooperative and malicious
clients. Technical guarantees of correctness and completeness are proven
against monotonic and nonmonotonic policies, called well-behaved policies. An
implementation of the model is given together with its performance evaluation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:4 • H. Koshutanski and F. Massacci

Fig. 1. Traditional access control.

Results presented in the article can be applied to multi-agent systems or
distributed systems comprising communications among autonomic nodes (soft-
ware agents, network servers, or mobile devices) having their own resources,
processing capabilities, and computing power.

The article follows by introducing the starting point of interactive access
control and comparing it with existing approaches. Section 3 presents the se-
mantics of the logical model and identifies the different reasoning services used
in the model. Section 4 introduces the interactive access control algorithm fol-
lowed by an example scenario in Section 5. Section 6 formally defines and proves
the model’s guarantees of correctness and completeness. Section 7 describes in
detail, the interactive access control prototype, called iAccess. Next, Section 8
presents the prototype performance evaluation. Section 9 concludes the article.
The appendix shows proofs of theorems stated in the article.

2. FROM ACCESS CONTROL TO INTERACTION

We will introduce the concept of interactive access control by evolving existing
access control frameworks. Let us start with traditional access control. A server
has a security policy for access control PA that is used when taking decisions
about the use of services offered by a service provider. A user submits a set of
credentials Cp and a service request r in order to execute a service. We say that
policy PA and credentials Cp entail r meaning that request r should be granted
by policy PA and the presented credentials, Cp.

Figure 1 shows the traditional access control decision process [De Capitani di
Vimercati and Samarati 2001]. Whether the decision process uses Role-Based
Access Control [Ferraiolo et al. 2001], Simple Public Key Infrastructure [SPKI
1999], RT framework [Li et al. 2002] or other trust management frameworks
it is immaterial at this stage: they can be captured by suitably defining PA, Cp,
and the entailment operator.

A number of works have deemed such blunt denials unsatisfactory. Bonatti
and Samarati [2002] and Yu et al. [2003] proposed sending back to clients some
of the policy rules that are necessary to gain additional access. Subsequent
promising approaches [Bertino et al. 2004; Nejdl et al. 2004; Kapadia et al. 2004;
Constandache et al. 2007] have developed their own polices and mechanisms
for deriving and negotiating policy rules.

Bonatti and Samarati’s approach defines that governing access to services is
composed of two parts: prerequisite rules and requisite rules. Prerequisite rules
specify the requirements that a client should satisfy before being considered for
the requirements stated by the requisite rules, which in turn grant access to
services. Their approach does not decouple policy disclosure from policy satis-
faction, as noted in Yu and Winslett [2003].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:5

Yu and Winslett [2003] overcome this limitation and propose treating policies
as first class resources: each policy protecting a resource is considered as a
sensitive resource itself, whose disclosure is recursively protected by another
policy, called meta-policy.

The meta-policy approach is also used in Bertino et al. [2004]. In this work,
each resource is protected by one or more disclosure policies. Each disclosure
policy has its policy preconditions and the policy content is revealed if one
of the preconditions is satisfied. Each policy precondition has as its own policy
precondition that at least one of them must be satisfied before the policy content
is released.

If we look at the underlying policy models one can find that either of the
approaches requires policies to be flat: a policy protecting a resource must con-
tain all credentials needed to allow access to that resource. As a result, it calls
for structuring of policy rules counter-intuitive to the access control point of
view. For instance, a policy rule may say that for access to the full text of an
online journal article, a requester must satisfy the requirements for browsing
the journal’s table of contents plus some additional credentials. A rule detailing
access to the table of contents could then specify another set of credentials. Even
this simple scenario is not intuitive in either formalism.

Further, constraints that would make policy reasoning nonmonotone (such
as separation of duties) require looking at more than one rule at a time. So, if
the policy is not flat, it has constraints on the credentials that can be presented
at the same time, or if a more complex role hierarchy is used, these systems
would not be complete.

The work by Kapadia et al. [2004] proposes inferring possible alternatives
from failed requests based on the policy scheme of Yu and Winslett. The work
uses ordered binary decision diagrams (OBDDs) to represent a resource’s policy
and its meta-policies. The root of the diagram is the resource itself, and its
successors are the policy requirements protecting the resource. The policy
requirements have further successors that are the meta-policy requirements
and so on. Upon the failure of a request, the approach traverses the diagram
from the root to its true state (representing grant status) and finds all alterna-
tives that would satisfy the request.

The work inherits the monotonicity limitations of Yu and Winslett’s set-
tings. The scheme reasons on a single rule specifying a resource’s policy and
its relevant meta-policy rules in order to find missing credentials satisfying the
request. As such, the approach cannot scale to nonmonotonic access policies
because they require looking at more than one rule (often the entire policy) at
any time.

In general, protecting resources’ policies with meta-policies in the access
policy itself, allows a system to have control of when a policy can be disclosed
from when a policy is satisfied. However, this approach interlocks access and
disclosure reasoning in one security policy setting.

The foundation of our approach is to decouple the decision about access from
the decision about disclosure. Resource access is decided by the business logic
whereas policy disclosure is due to security and privacy considerations. We first
define decision about access: if a requestor has enough access rights to get a

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:6 • H. Koshutanski and F. Massacci

Fig. 2. Basic idea of interactive access control.

resource according to an access policy. If access fails then it is necessary to
decide about disclosure and the necessity of information to explain why access
failed. If enough information is disclosed to justify the necessity of additional
requirements (what is missing to grant access) then ask for these requirements,
otherwise if there is not enough information to justify access failure, then deny
access.

The important aspect here is that the decision about disclosure comes only
if the decision about access fails as opposed to the current approaches.

2.1 Intuition 1: Advanced Reasoning Service Abduction

If we abstract the above approaches, the only reasoning service used for access
control is deduction—check if the request follows from a security policy and
presented credentials.

We identify the need of another reasoning service, called abduction—check
what missing credentials are necessary so that the request can follow from the
policy and the presented credentials. Thereupon, we present the basic idea of
interactive access control shown in Figure 2.

The “compute a set CM such that . . . ” (step 2a) is exactly the operation of
abduction, formally defined in Section 3. An essential part of the abduction
reasoning is the computation of a set of missing credentials that is a solution
for the request and, at the same time, is consistent with the policy state. The
consistency property gives us strong guarantees for the missing set of creden-
tials when applying the algorithm on nonmonotonic policies. Section 6 examines
in detail the algorithm’s properties.

Challenge. Having abduction as a tool for finding missing credentials we face
a new challenge: how do we decide the potential set of missing credentials?

It is clearly undesirable to disclose all credentials occurring inPA and, therefore,
we need a way to define how to control the disclosure of such a set.

2.2 Intuition 2: Disclosure Control Policy

We need two policies: one for granting access to one’s own resources and one
for disclosing the need of foreign (someone else’s) credentials. Therefore, we
introduce a security policy for disclosure control PD. The policy for disclosure
control identifies the credentials whose need can potentially be disclosed to
a client. In other words, PA protects partner’s resources by stipulating what

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:7

Fig. 3. Interactive access control with controlled disclosure.

credentials a requestor must satisfy to be authorized for a particular resource
while, in contrast, PD defines what credentials among those occurring in PA
are disclosable (i.e. can be asked) to the requestor. We note that PD may also
identify credentials that do not occur in PA but are required for fine-grained
disclosure protection.

Figure 3 shows the refined algorithm with controlled disclosure.
Yu and Winslett’s policy scheme determines whether a client is authorized

to be informed of the need to satisfy a given policy. While, in our case, having
a separate disclosure control policy allows us to determine whether a client
is authorized to see the need for single credentials. One can approach a fine-
grained disclosure control by defining the disclosure of entire policies as single
units as well as the disclosure of single credentials composing those policies.

Stepwise Disclosure Control. Having a separate disclosure policy allows us to
have additional reasoning on the policy that helps us to disclose credentials in
a stepwise fashion. The basic intuition is that the logical policy structure itself
tells us what credentials must be disclosed to obtain the information that other
credentials are missing. The negotiation model presented in Koshutanski and
Massacci [2007] extends the interactive algorithm with an additional function-
ality of computing stepwise sets of missing credentials and requesting them
gradually until a solution is agreed that grants a resource. In other words,
the ask(CM) function of the interactive algorithm is replaced with a stepwise
disclosure of requirements by observing PD structure so that at the end CM is
disclosed to a client.

In this article we will abstract from the stepwise disclosure functionality and
treat a set of missing credentials, CM, as a single unit of disclosure. One can
well apply the stepwise approach on top of the results achieved in the article.

Let us look at Yu and Winslett’s own example [Yu and Winslett 2003, p. 4].

Example 2.1 (McKinley Clinic). [Access Scenario] McKinley clinic makes
its patient records available for online access. Let r be Alice’s record. To gain
access to r a requester must either present Alice’s patient ID for McKinley clinic
(CAliceID), or present a California social worker license (CCSWL), and a release-
of-information credential (CRoI) issued to the requester by Alice.

[Disclosure Scenario] Alice wants to keep the latter constraint inaccessible
to strangers as it may help them to infer that Alice has mental or emotional

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:8 • H. Koshutanski and F. Massacci

problems. However, employees of McKinley clinic (CMcKinleyEmployee) should be
allowed to see the contents of this policy.

[Security Policy]
P: r : P

P ↔ P1 ∨ P2 and P : true
P1 ↔ CAliceID and P1 : true
P2 ↔ CCSWL ∧ CRoI and P2 : true
P2 : P3

P3 ↔ CMcKinleyEmployee and P3 : true

P, P1, P2 and P3 are policy identifiers. r and P2 are protected sensitive
resources.

[Example formalization as two logic programs]
PA: r ← CAliceID. PD: CAliceID.

r ← CCSWL, CRoI. CCSWL ← CMcKinleyEmployee.
CRoI ← CMcKinleyEmployee.

PA states that access to r is granted either to Alice or to California social
workers that have a release-of-information credential issued by Alice.

PD states that the disclosure of Alice’s ID is not protected and potentially
released to anybody. The need for credentials CCSWL and CRoI is disclosed only
to users who have already presented their CMcKinleyEmployee.

The motivation for using metapolicies is to protect sensitive access policies
from being learned by unauthorized clients: those clients who do not comply
with the disclosure requirements. In our case, since we first define a decision
about access, one would argue that an opponent can probe an access policy
by sending different sets of credentials and monitoring the behavior of the
system.

Since the access control model enforces a meta-level interaction process,
driven by deduction and abduction reasoning, one can address specific dis-
closure requirements by properly defining the structure of the access and
disclosure policies. For example, one can add to all resources’ policies a guarding
primitive that its satisfaction requires a certain set of credentials to be pre-
sented by an opponent (e.g., r ← Pr , guard . guard ← Pguard) in order to learn
actual access information. In this way, the primitive causes access failure, even
if a resource’s policy is satisfied, until the guarding primitive’s policy is satisfied.
Then, how the guarding requirements are disclosed to the opponent is also the
matter of a disclosure policy structure.

Winsborough and Li [2006] postulate a property for safety in automated
trust negotiation that further justifies the importance of well-designed access
and disclosure policies for protecting the behavior of a system.

A question that would come up is whether the disclosure policy is resource
aware—whether we could have an association between resources and creden-
tials protecting resources within PD. For example, let us have a second resource
r2 protected by credential CCSWL the disclosure of which does not depend on the
presence of CMcKinleyEmployee, but which is the case for r.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:9

Example 2.2 (Fine-grained disclosure control).

PA: r ← CAliceID. PD: CAliceID ← r.
r ← CCSWL, CRoI. CMcKinleyEmployee ← r.
r2 ← CCSWL. P1 ← CMcKinleyEmployee, r.

CRoI ← P1.
CCSWL ← P1.
CCSWL ← r2.

PD states that the disclosure of Alice’s ID is potentially released to anybody hav-
ing requested resource r. The need for credential CMcKinleyEmployee is released to
anybody requesting r. P1 is a policy identifier encapsulating disclosure of CCSWL
and CRoI. The need for credentials CCSWL and CRoI is disclosed only to those who
have already presented CMcKinleyEmployee and requested resource r. Alternatively,
the need for CCSWL is released to those clients who have requested r2.

To make the interactive algorithm behave as expected, we have to include
the service request as a fact when computing the disclosable credentials. Thus,
step 2a becomes “compute a set of disclosable credentials CD entailed by PD, r,
and Cp.”

In the rest of the article, without loss of generality, we assume that the
disclosure policy is resource aware and whenever PD is involved it implies PD ∪
{r}.

Now, if we add the two rules {CRoI ← r. CCSWL ← CRoI, r.} to PD, then we are
able to provide another solution to the example problem that is not intuitive in
the policy scheme of Yu and Winslett. We allow a client to know the need for
a release-of-information credential issued by Alice without revealing the need
of CCSWL (inferring Alice has a mental problem). On the other side, CCSWL is
disclosed only if a client has CRoI presented to the system. Thus ensuring only
clients evidenced by Alice will know the need for CCSWL.

Example 2.3 (Rental car service [Bertino et al. 2004, p. 832]).

P: pol1 = ({}, Rental Car ← Ccorrier employee, CID card).
pol2 = ({}, Rental Car ← Cdriving license).
pol3 = ({pol2}, Rental Car ← Ccredit card).
pol4 = ({pol3, pol1}, Rental Car ← DELIV).

Policy pol4 says that either pol3 or pol1 must be satisfied before granting
(delivering) the service Rental Car. pol3 states that the release of the need
for a credential for a credit card will be shown to those who satisfy pol2. pol2

has no preconditions and releases its content to anybody: the need for a drivers
license credential. pol1 has also no preconditions and discloses the need for an
employee certificate at Corrier company and credential for an ID card poten-
tially to any client.

[Example formalization as two logic programs]

PA: Rental Car ← Cdriving license, Ccredit card.
Rental Car ← Ccorrier employee, CID card.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:10 • H. Koshutanski and F. Massacci

PD: Ccorrier employee ← Rental Car.
CID card ← Rental Car.
Cdriving license ← Rental Car.
Ccredit card ← Cdriving license, Rental Car.

If we consider dynamic environments where network (privacy) settings con-
tinuously change, one can even define a set of disclosure policies each corre-
sponding to a particular network/system state. For example a disclosure policy
may consider a set of environmental factors like time, work load, or other system
conditions that could enforce additional disclosure control. These dynamic con-
ditions are likely to be the case in autonomic communication networks. Once the
access control algorithm is run it could dynamically select a disclosure policy
best suited to the current system state. Having multiple disclosure policies for
particular access control requirements is not scalable in the current approaches
because they tie access and disclosure requirements into one security policy
setting.

2.3 Intuition 3: Extension to Automated Trust Negotiation

A question that would come up when introducing interactive access control is
what happens on the client side once the computed missing credentials are
requested by a server. The work in Koshutanski and Massacci [2007] extends
the interactive model to function on both client and server sides. The intuition
is that by mirroring the access control algorithm on the client side, the client is
also able to abduce what missing credentials need to be requested to a server
in order to disclose its own credentials.

The work proposes a negotiation scheme that builds a negotiation protocol
on top of the interactive algorithm. The negotiation protocol allows two entities
in a network to mutually establish sufficient access rights needed to grant a
resource. The protocol runs on two sides so that entities understand each other
and automatically interoperate.

This article examines in detail, the guarantees the interactive model pro-
vides when applied to monotonic and nonmonotonic access policies. So one could
run a trust negotiation over a nonmonotonic policy domain and still guarantee
completeness and correctness of the negotiation process.

Since the negotiation protocol is driven by abduction and deduction reason-
ings one can accommodate negotiation strategies on top of it, so that missing
sets of requirements are released (negotiated) according to some high-level
goals. The work by Baselice et al. [2007] proposes a general framework for
specifying high-level negotiation strategies abstracting from a specific policy
language.

3. POLICY SYNTAX AND SEMANTICS

Policies are written as normal logic programs [Apt 1990]. A normal logic pro-
gram is a set of rules of the form:

A ← B1, . . . , Bn, not C1, . . . , not Cm, (1)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:11

where A, Bi and Ci are possibly ground predicates. A is called the head of the
rule; each Bi is called a positive literal; and each not Cj is a negative literal,
whereas the conjunction of Bi and not Cj is called the body of the rule. If the
body is empty the rule is called a fact.

In the framework, we also need constraints that are rules with an empty
head.

← B1, . . . , Bn, not C1, . . . , not Cm. (2)

One of the most prominent semantics for normal logic programs is the stable
model semantics proposed by Gelfond and Lifschitz [1988]. The intuition is to
interpret the rules of a program, P , as constraints on a solution set, S (a set
of ground atoms), for the program itself. So, if S is a set of atoms, rule (1) is a
constraint on S stating that if all Bi are in S and none of Cj are in it, then A
must be in S. A constraint, (2), is used to rule out from the set of acceptable
models, situations where all Bi are true and all Cj are false.

We give the formal definitions for the basic reasoning services:

Definition 3.1 (Logical Consequence and Consistency). Let P be a logic
program and L be a positive ground literal. L is a logical consequence of P,
symbolically P |= L, if L is true in every stable model of P. P is consistent,
P �|= ⊥, if there is a stable model for P.

Definition 3.2 (Security Consequence). A request, r, is a security conse-
quence of a policy, P, if (1) P is logically consistent, and (2) r is a logical conse-
quence of P.

Definition 3.3 (Abduction). Let P be a logic program, H a set of ground
atoms (called hypotheses or abducibles), L a ground literal (called observation),
and ≺ a partial order over subsets of H. A solution of the abduction problem
〈L, H, P〉 is a set of ground atoms E such that:

(i) E ⊆ H,

(ii) P ∪ E |= L,

(iii) P ∪ E �|= ⊥,

(iv) any set E ′ ≺ E does not satisfy all conditions above.

Traditional partial orders are subset containment or set cardinality.

Definition 3.4 (Solution Set for a Resource). Let P be an access policy and
r be a resource. A set of credentials, CS , is a solution set for r according to P if
r is a security consequence of P and CS : P ∪ CS |= r and P ∪ CS �|= ⊥.

Definition 3.5 (Monotonic and Nonmonotonic Policy). A policy P is mono-
tonic if whenever a set of statements C is a solution set for r according to P
(P ∪ C |= r), then any superset C ′ ⊃ C is also a solution set for r according to P
(P ∪ C ′ |= r).

In contrast, a nonmonotonic policy is a logic program in which if C is a solution
for r there may exist C ′ ⊃ C that is not a solution for r, i.e. P ∪ C ′ �|= r

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:12 • H. Koshutanski and F. Massacci

Fig. 4. Interactive access control algorithm.

Definition 3.6 (Resource r Additive Policy). A policy P is a resource r addi-
tive if for any two solution sets CS and CS ′ for r where CS �⊂ CS ′ and CS ′ �⊂ CS ,
then CS ∪ CS ′ is also a solution set for r according to P.

Definition 3.7 (Resource r Subset Consistent Policy). A policy P is a re-
source r subset consistent if for every solution set CS for r it holds that any
C ⊆ CS preserves consistency in P, i.e. P ∪ C �|= ⊥.

Definition 3.8 (Well-behaved Policy). A policy P is well-behaved if for all
resources r ∈ P

(i) P is resource r additive and

(ii) P is resource r subset consistent.

Section 6 shows how the interactive access control model guarantees com-
pleteness and correctness when applied on well-behaved policies.

4. INTERACTIVE ACCESS CONTROL ALGORITHM

We now summarize all the information we need to state the interactive access
control algorithm, shown in Figure 4.

—PA a security policy governing access to resources,

—PD a security policy controlling the disclosure of foreign (missing) credentials,

—Cp a set of credentials presented by a client in a single interaction,

—CP a set of active credentials presented by a client during an interactive access
control process,

—CN a set of credentials that a client has declined to present during an inter-
active process.

When a client initially requests a service, the server creates a client profile
corresponding to a new session. The profile consists of CP and CN initially set

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:13

up as empty sets. A client requests a service by submitting a request r and a
set of presented credentials Cp. Cp is optional and could be an empty set.

Steps 1 and 2 update the client profile with newly presented credentials as
follows. Active credentials CP are updated with Cp. Declined credentials CN are
updated with the missing credentials (CM) the client was asked for in the last
interaction set. CM is initially set up to an empty set.

Once the profile is updated, the algorithm checks whether the request, r,
is granted by PA according to CP (step 3). If the client does not have enough
access rights then the algorithm computes all credentials disclosable from PD
according to CP and removes all already declined and presented credentials
from the resulting set (step 4). The latter step is used to avoid dead loops,
asking something already declined or presented.

Next, the algorithm computes all subsets of CD that are consistent with PA
and satisfy r. Out of all these sets (if any) the algorithm selects the minimal
one (step 4a) to be asked of a client.

Remark 4.1. Using declined credentials is essential to avoid dead loops in
the process and to guarantee successful interactions in presence of disjunctive
information.

We point out that minimality criteria play an important role in selecting
a missing set of credentials when addressing the principle of least privilege
[Saltzer and Schroeder 1975]. Set cardinality criterion does not fully apply
mainly because credential sensitiveness plays the more important role than
cardinality. The role minimality criterion is more adequate when dealing with
role-based access control models. If we have attribute-based access control, one
can associate values to attributes (e.g. level of sensitiveness) so that one can
perform minimality reasoning on them. Additionally, one can accommodate
sequences of criteria for filtering missing sets depending on particular access
control requirements.

In cases of more than one equally minimal computed solution, the algorithm
picks one as a solution to be asked of a client. However, one can slightly modify
the algorithm so that it returns all equally minimal solutions as disjunctive
information. Then, on the next iteration the declined credentials are computed
as the union of all missing sets asked in the last iteration set different from the
ones presented in the current step.

The interactive algorithm assumes stateless systems where access control
depends only on policies, presented credentials, and the service request. In
Koshutanski and Massacci [2005] we propose an extension of the framework
that copes with stateful systems, especially with automated conflict detection
and resolution. Stateful systems are systems where access decisions change
depending on past interactions or past presented credentials. Such systems
can become inconsistent with respect to a client’s set of presented credentials
mainly because access policies may forbid the presentation of a credential if
other, currently active, credentials have been presented in the past. The ex-
tended model postulates that in the stateful system domain one needs to reason
not only about missing credentials allowing access but also about what excess
(conflicting) credentials make the policy state inconsistent.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:14 • H. Koshutanski and F. Massacci

Fig. 5. Planet-Lab hierarchy model.

5. AN EXAMPLE SCENARIO

Let us consider a shared overlay network, Planet-Lab, between Italian uni-
versities and German research institutions. For the sake of simplicity assume
that there are three main access types to resources: disk—read access to data
residing on Planet-Lab machines; run—read access to data and run processes
on the machines; and conf—configure access to data including the previous two
types of access plus the possibility of configuring network services on machines.

Figure 5 shows the hierarchy and granularity of roles considered for uni-
versities and research institutions, respectively. The partial order of roles is
indicated by arcs, where the higher the role in the hierarchy, the more powerful
it is. A role dominates another role if it is higher in the hierarchy and there is
a direct path between them.

The access policy of the Planet-Lab network specifies that:

—disk access is allowed to any role of the Planet-Lab hierarchy,

—run access is allowed to any employee or higher role at a German research
institute, or to any researcher or higher role at an Italian university,

—conf access is allowed to junior scientists or higher role at a German research
institute, or to any assistant or higher role at an Italian university.

There is a preprocessing step that validates and transforms certificates
to predicates suitable for the formal model: credential (HolderID, AttrName,
IssuerID) if attribute certificate; certificate (SubjectID, IssuerID) if identity cer-
tificate. There is a mapping from the trusted public keys of SOAs (Source of
Authorities) or CAs (Certificate Authorities) to their internal policy identifiers
represented by IssuerID value. Using a second predicate, IssuerType(IssuerID),
one can classify which SOAs and CAs are considered trusted to issue particular
types of attributes and identity certificates.

We represent variables starting with a capital letter (e.g. Holder, Attr, Issuer)
while constants start with a lower case letter (e.g., planetLab Class1SOA,
accredited, juniorScientist). A variable indicates any value in its field and is
valid within the rule it appears.

Figure 6 shows the formalization of Planet-Lab access and disclosure policies.
Following is the functional explanation of the policies.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:15

Fig. 6. Planet-Lab access and disclosure control policies.

Access policy:

—Rule (1) defines the trusted SOA issuing Planet-Lab membership certificates.
Rule (2) defines the trusted SOA accrediting German research institutes and
rule (3) defines the trusted SOA accrediting Italian universities. Rules (4)
and (5) specify trusted CA certifying identities of Italian universities and
German research institutions, respectively.

—Rule (6) grants disk access to the shared network to any entity (holder Hol)
presented memberPlanetLab role credential issued by the trusted Planet-Lab
SOA.

—Rule (7) grants disk access to anybody who has run access permission.

—Rule (8) grants run access to any holder of an attribute higher or equal to a
researcher position issued by an Italian university. To validate an italian uni-
versity, Planet-Lab policy requires two additional certificates: an identity cer-
tificate identifying the university entity as a legal key holder and an attribute
certificate attesting the university entity as accredited Italian university.
The former case is validated by the two predicates certificate (Univ, IssUniv)
and issuerUnivIT(IssUniv), while the latter case by the two predicates
credential (Univ, accredited, IssAcc) and issuerAccredUnivIT(IssAcc). Together
all the predicates in the body of rule (8) validate an Italian university and
implicitly delegate its right to state who has what position at the university.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:16 • H. Koshutanski and F. Massacci

—Rule (9) grants run access to any holder of a credential certificate with an
attribute role higher than or equal to an employee position at any German
research institute. Planet-Lab policy requires two additional certificates
to validate a research institution: an identity certificate identifying the
institution as a legal key holder and an attribute certificate attesting to the
institution as being accredited.

—Rule (10) grants run access to anybody who has conf access permission.

—Rule (11) grants conf access to any holder of a credential with a position
equal to or higher than assistant and issued by an Italian university.
University validation follows analogously to rule (8).

—Rule (12) grants conf access to any holder of a credential certificate with a
role higher than or equal to a junior scientist position issued by a German
research institute. Institute validation follows analogously to rule (9).

Disclosure policy:

—Rule (1) discloses the need for a Planet-Lab membership credential and spec-
ifies the intended credential issuer. Rule (2) discloses the need for creden-
tials attesting employee, junior scientist, senior scientist, and board of direc-
tors, respectively. Rule (3) discloses the need for credentials attesting roles-
researcher, assistant, associate, and full professor, respectively.

—Rule (4) discloses the need for a certificate identifying Italian universities,
and specifies the intended certificate issuer. Rule (5) discloses the need for a
certificate identifying German research institutes, and specifies the intended
certificate issuer.

—Rules (6) and (7) disclose the need for a credential certifying Italian univer-
sities as accredited institutions, and a credential certifying German institu-
tions as accredited, respectively.

Access control scenario 1. Alice is a senior scientist at Fraunhofer institute in
Berlin. She has been issued two certificates one for an employee at the research
institute and another one attesting that she is a senior scientist, both issued
by a Fraunhofer certificate authority.

Now, Alice wants to run a service located at the Planet-Lab network. For
doing so she presents her employee certificate at access time

credential (alice milburk, employee, fraunhofer Inst Berlin)

presuming it is enough, as she knows that Planet-Lab is a joint network between
German and Italian institutions.

According to the access policy (rule 9) any employee at a German re-
search institute is allowed run access to the network but additionally they
must present a certificate identifying Fraunhofer as a legal key holder and
a certificate attesting Fraunhofer as a legal (accredited) German research
institute.

Alice’s credentials are not enough to get run access and the request would be
denied. Then, the interactive algorithm (step 4a) computes the set of disclosable
credentials as all credentials disclosed from rules (1) to (7) of the disclosure

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:17

policy to compare with Alice’s presented credentials—the credential for an
employee.

Next, abduction computation (subset minimal) finds the following missing
set that satisfies the request:

{certificate (Inst, govdeutsch class1CA),
credential (Inst, accredited, deutschAkkred class1SOA)}

There is a post processing step that maps the internal policy identifiers of SOAs
and CAs (like govdeutsch class1CA) to their high-level descriptions that are to
be returned back to the client.

Alice receives the missing set of credentials, then she consults the Fraunhofer
authority that issued her employee certificate in order to obtain the missing
credentials. Next interaction, she requests the service presenting the missing
set of credentials and the system grants her access.

Access control scenario 2. Alice wants to configure an online system for paper
submissions of a workshop. She submits her employee certificate together with
the two certificates identifying Fraunhofer institute as a legitimate key holder
and as an accredited institution. Formally, the initial set of credentials is:

{credential (alice milburk, employee, fraunhofer Inst Berlin),
{certificate (fraunhofer Inst Berlin, govdeutsch class1CA),
{credential (fraunhofer Inst Berlin, accredited, deutschAkkred class1SOA)}.

Looking at the access policy rule (12), configure access is allowed to junior
scientists or higher role positions. The algorithm computes the set of disclosable
credentials and removes all that have been already presented by Alice. Next,
abduction reasoning finds the following sets of missing credentials:

{credential (Hol, juniorScientist, Inst)}
{credential (Hol, seniorScientist, Inst)}
{credential (Hol, boardOfDirectors, Inst)}.

Now, using the role minimality criterion, the algorithm selects the set {cre-
dential(Hol, juniorScientist, Inst)} as the minimal one and returns it to the
client.

Since Alice is a senior scientist she declines to present the requested
credential and returns the access request but with no entry for presented cre-
dentials. The algorithm updates Alice’s profile marking the requested credential
as declined. The difference comes when the algorithm recomputes the disclos-
able credentials as all disclosable credentials from the disclosure policy set
difference between Alice’s presented and her declined credentials. Out of those,
abduction finds the following missing sets:

{credential (Hol, seniorScientist, Inst)}
{credential (Hol, boardOfDirectors, Inst)}.

The algorithm selects the need for senior scientist and returns it to Alice. On
the next interaction, Alice presents her senior scientist credential and gets the
service request granted.

The interactive steps in access scenario 1 can be leveraged in two ways. First
by using the credential chain discovery algorithm as a preprocessing step to

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:18 • H. Koshutanski and F. Massacci

the interactive algorithm—discovering all relevant credentials before getting
a decision. Second, by using a postprocessing step that returns to a client the
need for credentials only relevant to the subject attributes and gathering the
remaining credentials directly from predefined certificate authorities’ public
repositories. The latter case outlines potential work on extending the model to
reason on automated credential discovery.

6. ACCESS CONTROL GUARANTEES

We define below the main guarantees the access control framework provides.

Definition 6.1 (Soundness). If a client is granted a service request then he
has a solution for the request.

Definition 6.2 (Completeness). If a client has a solution for a service then
he will be granted the service.

To prove the guarantees, we first look at the policies underlying our model and
especially what would be reasonable access and disclosure policies that support
these guarantees.

Definition 6.3 (Fair Access). Let PA be an access control policy and let CPA
be the set of ground instances of all credentials occurring in PA. The policy PA
guarantees fair access if for any request r there exists a set CS ⊆ CPA that is a
solution for r.

Definition 6.4 (Fair Interaction). Let PA and PD be access and disclosure
control policies, respectively. The policies guarantee fair interaction if

(1) PA guarantees fair access, and

(2) if CS is a solution for a request r, then CS is disclosable by PD: ∀c ∈ CS , PD |=
c.

The intuition of fair interaction is that any solution for a request should be
potentially visible to clients. The property essentially defines the conditions for
granting services to clients. It does not imply that the service disclosure policy is
trivial but rather defines the decision of successful start-up of any interaction
process. The property is evident in all trust negotiation models: if there is a
policy protecting a resource then the policy (and its meta-policy requirements)
should be negotiated with an opponent in order to provide access. How the
requirements are negotiated (disclosed) is a matter of concrete trust negotiation
settings/strategies. In our case, on top of the property, one can protect a solution
set by means of stepwise disclosure control (ref. Example 2.2).

The interactive algorithm itself provides a tool for validating the fair access
and interaction properties. Indeed, one can set up the disclosable credentials
to all credentials CPA and run the interactive algorithm for any resource r ∈ PA
with no entry for initial credentials. If for all requests the algorithm returns
ask(CM), then the fair access property holds. If for some r it returns deny, then
the property fails. For example the policy PA = {r0 ← CA. r1 ← r0, CB. r2 ←
r1, not CA.} does not satisfy fair access.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:19

If we modify the interactive algorithm to return all missing solutions (subset
minimal, ⊆-minimal) in one round then we can extend the validation to check
the fair interaction property. Now, for each request r and for each CM returned,
we again run the interactive algorithm, but just the section on deduction, on
PD instead of PA, and specify CM as a request. If for any resource in the access
policy, any solution set is granted by the disclosure policy (thus disclosable by
PD) then access and disclosure policies satisfy fair interaction. One can also
approach validation of well-behaved policies by properly employing abduction
and deduction reasoning in an algorithm.

One would argue that if it is a fair interaction then why not simply request all
credentials allowed by the disclosure policy instead of abducing missing ones.
First, the disclosure policy controls the disclosure of all the resources’ policies
under a partner’s domain and so we need to abduce only the relevant informa-
tion (credentials). Second, by abducing the missing credentials we ensure that
at any moment the missing set of credentials is an actual solution, that it is
consistent with the access policy.

We make the following policy assumptions.

Remark 6.1 (Policy Assumptions). Hereinafter all PA are well-behaved poli-
cies and all PD are monotonic policies.

The well-behaved property ensures that if we have two solutions for a service
we can add them and we will still get the service, and if we have a solution
for a service, any subset of this solution is consistent with the policy. With the
latter requirement we avoid situations where lack of information makes a policy
inconsistent.

The set of well-behaved policies resides between monotonic and arbitrary
policies.

PROPOSITION 6.1. All monotonic policies are well-behaved but the converse
is not true.

PROOF. In one direction the property is immediate (refer to Definition 3.5).
For the other direction we show a counter-example:

r1 ← CA.

r1 ← CB.

r2 ← CC.

← CA, CC.

← CB, CC.

In our case, having {CA, CB, CC} bans the client from getting either of the
services, which clearly shows that the example is a nonmonotonic policy. At
the same time, for each of the services we have additive and consistent subset
properties so that the policy is well-behaved.

Monotonicity on PD ensures that if a solution is visible to a client then that
solution should remain visible during interaction steps. Consider the following
example.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:20 • H. Koshutanski and F. Massacci

Example 6.1 (Nonmonotonic Disclosure).

There are two sets of disclosable credentials and either of them contains a
solution, set for r1. If the interactive algorithm selects CD1 then the solution
that abduction finds is {CA, CD}. On the next interaction step the client supplies
CD (as he does not have in possession CA) and gets denial because the presence
of CD bans the disclosure of CE and abduction cannot find any solution in the
new set of disclosable credentials.

The prior example illustrates the necessity of a unique stable model of PD in
order to guarantee the fair interaction property during all interactions within
an access control session. We define syntactic restrictions on the PD structure
to be a stratified logic program [Apt 1990].

Let us look at a client side and define what would be a reasonable client that
our framework aims to provide the guarantees for.

Definition 6.5 (Cooperative Client). A client with a set of credentials
(ability) C is a cooperative client if whenever he receives ask(CM), he returns
CM ∩ C.

The definition captures the practical and intuitive aspect of client’s behavior:
A client who has the right set of credentials and who is willing to send them to
a server will be granted access. We notice that it is fairly difficult to model and
prove any results for noncooperative clients.

One can also model a cooperative client as a client who returns the need of
CM if and only CM ⊆ C. In this case the server will keep track of any declined set
CM during an interactive process and will mark them as constraints (constraint
rules of credential combinations) over possible solution sets when performing
abduction reasoning. Thus, the server will interact with the client until a CM
is requested that matches the client’s capability.

However, this level of cooperativeness results in a more expensive interaction
process in terms of an increased number of interactions for successful agree-
ment. One can extend the results in this article to also capture this type of
cooperative client.

The work in Koshutanski and Massacci [2007] empowers cooperative clients
with a negotiation model that allows them to negotiate with a server for addi-
tional requirements before presenting the own credentials. Thus, a client and
a server become cooperative on that set of credentials on which they have mu-
tually satisfiable requirements.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:21

We assume that a client initiates a service request with an empty set of
presented credentials. This assumption is important in order to avoid initial
inconsistency and to ensure a successful first step.

The proofs of termination and completeness of the claims stated in the
following are based on termination and completeness of the abduction rea-
soning. We refer the reader to Eiter et al. [1997]; Denecker and Schreye [1998];
and Verbaeten [1999] for a comprehensive analysis of the logic programming
abduction problem, its computational complexity, completeness, and termina-
tion.

THEOREM 6.1 (SOUNDNESS). Let PA be an access policy, PD be a disclosure
policy, and r a request. If a client gets grant r with the access control algorithm
then the client has a solution set CS that unlocks r according to PA.

PROOF. This proof is rather straightforward. The only way to introduce a
credential in CP is by step 1 of the algorithm. Since initially CP = ∅, the client
has sent a sequence of sets of credentials Cp1, . . . , Cpn such that

⋃n
i=1 Cpi = CP ,

the client has a set of credentials that unlocks r.

THEOREM 6.2 (TERMINATION). The access control algorithm always termi-
nates.

PROOF. At each interaction the union of presented and declined creden-
tials always increases. Because at each interaction abduction finds a different
solution with respect to the preceding ones then the union sets always increase
with new credentials occurring in the access policy.

Since the union set is bound by the credentials occurring in the policy then
there is always a stage in which either grant (enough presented credentials) or
deny (too many declined credentials) is given.

THEOREM 6.3 (COMPLETENESS FOR A COOPERATIVE CLIENT). Let PA be an access
policy, PD be a disclosure policy, and r a request. If PA and PD guarantee fair
access and interaction then if a cooperative client has a set of credentials CS that
is a solution for r according to PA then the client always gets grant r with the
access control algorithm.

PROOF. Refer to the appendix.

7. IMPLEMENTING THE ACCESS CONTROL FRAMEWORK:
IACCESS SYSTEM

This section describes an implementation of the access control framework called
iAccess.

7.1 Use of Answer Set Programming Solvers (ASP)

With the increase of computational power over the last decade, ASP solvers have
become very efficient tools4 that can compute results with several thousands of

4See benchmarks of ASP solvers http://asparagus.cs.uni-potsdam.de

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:22 • H. Koshutanski and F. Massacci

atoms and rules. It makes them suitable for access control engines especially
when scaling to hundreds of access rules, constraints, and user roles and tasks.

We use the DLV5 system [Leone et al. 2006] as a back-end engine for the
basic computations of deduction and abduction. DLV is a disjunctive datalog
system with negations and constraints under the stable model semantics. DLV
provides front-ends facilitating different computations.The two front-ends rele-
vant to our purposes are the disjunctive datalog (the default) used for deductive
computations and the diagnosis front-end used for abductive computations.

We use DLV’s default front-end to check if a request, marked as a query, is
granted by the access policy and presented credentials: if the request is true
or false in all stable models of the policy union of the presented credentials.
Alternatively, we use the default front-end with an input being a disclosure
policy union of a set of presented credentials, in order to compute all disclosable
credentials.

We use the diagnosis front-end with input: a service request stored in a file
with extension .obs, a set of disclosable credentials stored in a file with exten-
sion .hyp, and the third argument, an access policy union, a set of presented
credentials. The file with extension .hyp points to a set of hypotheses and with
.obs points to a set of observations. The DLV output of that step are all subsets
(subset minimal) of the hypotheses that satisfy the observations.

7.2 Integration with X.509 Standard

We adopted the X.509 [X.509 2005] certificate standard for attesting partic-
ipants’ identities and attributes. There are two certificate types considered
by the standard: identity and attribute certificates. An X.509 identity certifi-
cate is used to identify entities in a network. The main fields of the certifi-
cate’s structure are the subject information, the public key identifying the sub-
ject (corresponding to the subject’s private key), the issuer information, and
the digital signature on the document, signed by the issuer with its private
key. The X.509 attribute certificate has the same structure as the identity
certificate with the difference being that instead of a public key field there
is a field for listing attributes and the subject field is called holder (of the
attributes).

As noted in Section 5, we need a way to semantically convert X.509 cer-
tificates to internal policy-compliant representation. We adopted the following
transformations:

—An identity certificate to certificate(subject, Issuer: i) predicate identifying
entity subject stated by authority i.

—An attribute certificate to credential(holder, Attr: a, Issuer: i) predicate
attesting that the holder has an attribute a issued by authority i.

The logical model has the following two sets of predefined identifiers regard-
ing credential transformations: Attr for attribute identifiers and Issuer for
certificate authority identifiers. We developed a semantic conversion module

5www.dlvsystem.com

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:23

that has a predefined database specifying certificate to credential conversions
including transformations between public keys of trusted CAs and SOAs and
their logical identifiers, as well as transformations between attribute values
and their logical representation.

The semantic conversion module also has the responsibility to properly con-
vert internal credential values to values compliant with the external domain a
request comes from.

7.3 Integration with SAML Standard

We have adopted the OASIS SAML6 standard for having standard semantics of
authorization statements among participants in an autonomic network. SAML
offers a standard way of exchanging authentication and authorization infor-
mation among online partners. The basic SAML data objects are assertions.
Assertions contain information that determines whether users can be authen-
ticated or authorized to use resources. The SAML framework also defines a
protocol for requesting assertions and responding to them, which makes it suit-
able when modeling interactive communications among entities in a distributed
environment.

A client uses a SAML Authorization Decision Query statement to specify a
resource name, and a resource action when requesting a service. Once a SAML
request is received iAccess extracts the Authorization Decision Query and in-
vokes the semantic conversion module for transforming it to a predicate of
the logical model. We have adopted the transformation Authorization Decision
Query to grant(Resource: r, Action: p) where Resource and Action are prede-
fined sets of identifiers considered in the logical model.

Once an access decision is taken, iAccess generates a SAML response
part incapsulating a SAML Authorization Decision assertion. The authoriza-
tion decision assertion has three types of decision values: permit, deny, and
indeterminate.

—Permit or Deny decision is used when the access control algorithm explicitly
returns grant or deny.

—Indeterminate decision is used when ask(CM) is returned.

iAccess uses the SAML standard attribute assertions to list the set of missing
credentials. For each certificate (subject, issuer), the semantic conversion mod-
ule generates a SAML assertion with an authentication statement detailing
subject and issuer fields. In the case of a credential (holder, attribute, issuer),
the semantic conversion module generates a SAML assertion with an attribute
statement.

7.4 iAccess Architecture

To make the access decision engine Web Services compatible we also adopted
W3C SOAP7 as a main transport layer protocol. SOAP is a lightweight protocol

6http://www.oasis-open.org/committees/security
7http://www.w3.org/TR/soap

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:24 • H. Koshutanski and F. Massacci

Fig. 7. iAccess architecture.

for exchanging structured information in a distributed environment. It has an
optional Header element and a required Body element. Informally, in the body
we specify what information is directly associated with the service request and
in the header additional information that should be considered by the end point
server.

To request an access decision on a message level one has to:

(1) Place a SAML Request in the SOAP Body thus making it an input to the
decision engine being invoked, and

(2) attach X.509 Certificates in the SOAP Header using a WS-Security8 speci-
fication for that.

Figure 7 shows iAccess system architecture. The bottommost layer comprises
the integration of the prototype with the Tomcat9 application server. To ensure
message confidentiality on the transport layer, one can perform all interactions
over an SSL connection.

When the Tomcat server receives an access request it invokes the iAccess
engine for an access decision. iAccess parses the SOAP envelope, containing

8http://www.oasis-open.org/committees/wss
9http://tomcat.apache.org

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:25

the body and the header elements, and extracts X.50910 certificates and the
SAML11 authorization query.

Next, iAccess validates and verifies the certificates and invokes the semantic
conversion module. The verification against trusted CAs and SOAs is to inter-
nally identify those authorities that are known and trusted by a server. Author-
ities unknown to a server are internally represented according to some default
criteria, for example, by using authorities’ common name (CN) of the X.500
structure.

We note that the semantic conversion database is dynamically allocated and
loaded depending on the domain the request comes from.

Once an access decision is taken iAccess invokes the conversion module
for transforming grant, deny, or additional credentials onto a SAML decision
assertion that is then wrapped in a SAML Response. Next, iAccess places a
time-stamp for a validity period on the decision statement and digitally signs it
to ensure the integrity of the information. The Tomcat server returns the SAML
decision to the entity requesting it. When the SAML assertion is received it
becomes an authorization certificate that is to be presented to an application
enforcement module for providing access to a resource.

The Envr/Context module provides the environment and context attributes
that access and disclosure policies are sensitive against (e.g. system time, state,
network endpoint address etc).

8. IACCESS PERFORMANCE EVALUATION

We will present iAccess time response evaluation in three parts: PKI/PMI,
access decision, and total time response. PKI/PMI covers the extraction of
X.509 certificates and SAML request, certificate validation and verification, and
logical predicates transformation. The second part corresponds to the actual
interactive access control algorithm functionality. The overall time response
includes the time response of PKI/PMI, access decision, and the time response
of the conversion module for generating a digitally signed SAML response ele-
ment containing the access decision.

We run the iAccess system on the access control policies described in Section
5. All the tests have been run on a PC with Windows XP, Intel Pentium 4
processor on 2 Ghz and 512 Mb of RAM.

Figure 8 shows the first set of trials. The performance has been measured in
milliseconds and rounded to seconds when displayed on the diagram. We have
invoked iAccess server 11 times with a different number of X.509 certificates.
For that purpose, we generated X.509 attribute certificates with roles, fraun-
hofer employee01 to fraunhofer employee97. Each trial has been done with
increase of 10 certificates and the last one with as input of 100 certificates.

Each trial had of an input, the three certificates: Alice Milburk employee,
Fraunhofer identity certificate, and Fraunhofer accredited institution; and the
remaining certificates from the newly generated ones: the first trial with 2 of
the new certificates, second with 7, third with 17 and so on, and the last one with

10X.509 technology provider: http://www.bouncycastle.org
11SAML technology provider: http://www.opensaml.org

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:26 • H. Koshutanski and F. Massacci

Fig. 8. iAccess performance with increased input of X.509 certificates.

97. Each trial specified access request for conf permission so that the system
had to compute a set of missing credentials (in our case juniorScientist) for
every request, thus obtaining the maximum system load.

The positive outcome of the first set of trials is that even with 100 certifi-
cates, the iAccess system response time to make a decision is around 1 second.
We conclude that the number of certificates and their respective cryptographic
operations are not a bottleneck for an iAccess timely decision. The generation
of a digitally signed SAML response remained within the range of 70–150 mil-
liseconds for all of the trials.

However, what we observed was that the access decision time remained less
than 100 milliseconds for all 11 trials while only the PKI/PMI portion increased
with the increased number of certificates. So, the total time response has been
influenced mainly by the PKI/PMI portion.

The explanation for that is the way the access decision algorithm functions. If
there are not enough access rights the algorithm computes the set of disclosable
credentials and then invokes the abduction reasoning with the input being the
set of credentials marked as hypotheses. If we look at the disclosure policy
(Figure 6), we immediately find out that whatever credentials we input, the
disclosure policy releases only the nine roles we have in the hierarchy and the
four certificates of trusted CAs and SOAs. Thus with the increased number of
clients’ certificates, the number of hypotheses input to the abduction engine
remained unchanged—10 facts—and the DLV engine took the same time to
compute a set of missing credentials. Remember that we remove all presented
credentials from the disclosable credentials, in our case the three certificates
for an employee, legal key holder, and accredited organization.

Figure 9 shows the second set of trials but this time with an increased num-
ber of hypotheses in each trial. We modified the disclosure policy by adding
new rules, such that for each presented credential in the range employee01 to
employee97 the policy discloses a new credential juniorScientist01 to junior-
Scientist97, respectively. Additionally, we specified that each juniorScientistXX

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:27

Fig. 9. iAccess performance with an increased number of hypotheses.

dominates the basic role juniorScientist. In this way by increasing the number of
input certificates we increase the number of hypotheses to the abduction engine.

We have done nine trials, but this time starting with six certificates and
increasing with one on each trial. On the horizontal axis we denote the number
of input certificates, and in brackets the number of hypotheses, fed to the
abduction engine. With 13 hypotheses the access decision time is 630 millisec-
onds and with 21 hypotheses the time response is approximately 31/2 min-
utes. The algorithm performance becomes very sensitive above 13 hypotheses.
The PKI/PMI portion remains imperceptible with respect to the access decision
time.

The conclusion from the second set of trials is that the number of disclos-
able credentials forms a critically important factor when designing access and
disclosure policies. To mitigate the exponential time growth, one could define
(split PD to) a single disclosure policy per resource (or per group of resources)
so that the system dynamically loads the relevant policy on request.

The main factor for the potential number of rounds needed to grant a service
is the complexity of the access policy and particularly how many possible solu-
tions exist for a service. Another possibility to increase system performance is
to enable the server side to cache some client details for subsequent requests.

An interesting idea in Bertino et al. [2004], that could be well used in our
setting, is the use of trust tickets. A trust ticket keeps information on recent suc-
cessful negotiations (interactions) of credential exchange for a given resource.
Thus, if a trust ticket is initially introduced (during an introductory phase)
for the same resource, then the access process can be speeded up by omitting
interactions on those requirements indicated in the trust ticket.

9. CONCLUSIONS

We have proposed a framework for access control for autonomic communication.
The key idea is that in an autonomic network a client may have the right set of
credentials but may not know it so an autonomic server needs a way to interact
and communicate with the client who is missing credentials that grant access.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:28 • H. Koshutanski and F. Massacci

We have proposed a solution to this problem by extending classical policy-
based access control models with an advanced reasoning service: abduction.
Built on top of it, we have presented the interactive access control algorithm
that computes, on the fly, missing credentials that entail a request.

We enriched the framework over the existing policy-based approaches for
access control by introducing the difference between monotonic and well-
behaved policies. The distinction extends our work on a wider set of policy
languages with respect to the already existing approaches. We have shown
that the access control framework is sound and correct. We have presented an
implementation of the model and its performance evaluation.

A prerequisite for adoption of the model is the definition of high-level tools
for policy specification and automated translation to their formal representa-
tion. We refer the reader to ASP RuleML12 for an approach to adapt RuleML13

language to express answer-set programs and their automated transformation
to/from logic programs.

A complimentary direction to policy specification is the definition of tools
for policy analysis. As we have seen, deduction and abduction could be suc-
cessfully employed as core services for policy analysis. Just recently, abductive
techniques have been considered for analyzing authorization policies [Becker
and Nanz 2008].

Future work includes the extension of the interactive model to cope with au-
tomated credential discovery. The aim is to leverage the interactive process and
reduce the number of credentials requested from a client. Another direction of
research is what guarantees the interactive framework offers in terms of inter-
operability when applied to existing negotiation systems such as TrustBuilder
[Winslett et al. 2002], Trust-X [Bertino et al. 2004], or PeerTrust [Nejdl et al.
2004].

APPENDIX

APPENDIX (FORMAL PROOFS)

PROOF THEOREM 6.3. We prove the theorem in two parts. The first part
proves that in a single interaction, if a cooperative client does not get grant
r, he gets ask(CM): a cooperative client will not be denied access by the
algorithm. Second part (rather straightforward) shows that since the access
policy is finite, then a cooperative client with a solution set for r will get grant r.

Part 1. Proof by induction on interaction steps:

Interaction 1. Client requests service r together with an initial set of pre-
sented credentials Cp = ∅. Fair access and interaction properties guarantee
that: (1) a solution for r exists according to the access policy PA, and (2) that
the solution is disclosable by the disclosure policy PD. Therefore, abduction
reasoning finds a solution for r and the algorithm returns it to the client.

12http://www.kr.tuwien.ac.at/staff/roman/aspruleml
13http://www.ruleml.org

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:29

Interaction N. Here we use the induction hypothesis that the client fails to
get grant r and gets ask(CM) at interaction step N-1. Now, suppose that the
client fails to get grant r at interaction N. There are two reasons to fail: either
there is no solution in the set of active credentials, CP , that unlocks the request,
or CP makes the access policy state inconsistent so that no solution set in CP
entails the request.

The set of active credentials, CP , increases only with credentials that are
part of other solutions for r: CP ⊂ (C1

M ∪ . . . ∪ CN−1
M), where Ci

M denotes the set
of missing credentials returned at each interaction preceding the current one.
Here we use the assumption that access policy PA is well-behaved. According
to Definitions 3.8, 3.7 and 3.6 it follows that CP is a subset of a solution set for
r (using the additive property) and is consistent with the access policy.

Therefore, CP preserves consistency in PA and the only reason the client fails
to get the grant is that there is no solution for r in CP .

In step 3 the algorithm computes the set of disclosable credentials, CD. Since
PA and PD guarantee fair access and interaction, then the solution set, CS , that
the client has, is disclosable—CS ⊆ (CD ∪ CP)—and not yet presented—CS �⊆ CP .

Following that, the abduction reasoning will find a solution for r in step 4b
and that solution is guaranteed by the existence of the nonempty set CS \ CP
justified by:

(i) (CS \ CP) ⊆ CD and

(ii) (CS ∪ CP) ⊂ (C1
M ∪ . . . ∪ CN−1

M ∪ CS).

Since PA is well-behaved it follows that CS ∪ CP does not make PA inconsistent:
PA ∪ CP ∪ CS �|= ⊥, and the client gets ask(CM) at interaction step N.

Part 2. We proved in Part 1 that in a single interaction step, if a cooperative
client does not get grant r he gets ask(CM).

There are a finite number of solutions for each request r simply because
PA consists of a finite number of access rules. The abduction reasoning service
at each interaction computes different solutions with respect to the solutions
computed in previous interactions because we remove all credentials that have
been already requested to a client from the disclosable credentials (ref. step 4a).

Since there are finite solution sets for r, and since the client has one of them,
therefore the client, in a finite number of interaction steps, will be asked to
present CS , (CS ⊆ CP), and will get grant r.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for their useful and con-
structive comments.

REFERENCES

APT, K. 1990. Logic programming. In Handbook of Theoretical Computer Science, J. van Leeuwen,

Ed. Elsevier.

BASELICE, S., BONATTI, P. A., AND FAELLA, M. 2007. On interoperable trust negotiation strategies. In

Proceedings of the IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY’07). IEEE Computer Society, 39–50.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

9:30 • H. Koshutanski and F. Massacci

BECKER, M. Y. AND NANZ, S. 2008. The role of abduction in declarative authorization policies. In

Proceedings of the 10th International Symposium on Practical Aspects of Declarative Languages
(PADL’08).

BERTINO, E., CATANIA, B., FERRARI, E., AND PERLASCA, P. 2001. A logical framework for reasoning

about access control models. In Proceedings of the 6th ACM Symposium on Access Control Models
and Technologies (SACMAT). ACM Press, 41–52.

BERTINO, E., FERRARI, E., AND SQUICCIARINI, A. C. 2004. Trust-X: A peer-to-peer framework for trust

establishment. IEEE Trans. Knowl. Data Eng. 16, 7, 827–842.

BONATTI, P. AND SAMARATI, P. 2002. A unified framework for regulating access and information

release on the web. J. Comput. Secur. 10, 3, 241–272.

CONSTANDACHE, I., OLMEDILLA, D., AND SIEBENLIST, F. 2007. Policy-driven negotiation for authoriza-

tion in the grid. In Proceedings of the IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY’07). IEEE Computer Society, 211–220.

DAMIANOU, N., DULAY, N., LUPU, E., AND SLOMAN, M. 2001. The Ponder policy specification language.

In Proceedings of the International Workshop on Policies for Distributed Systems and Networks
(POLICY’01). IEEE Computer Society, 18–38.

DE CAPITANI DI VIMERCATI, S. AND SAMARATI, P. 2001. Access control: Policies, models, and mech-

anism. In Foundations of Security Analysis and Design—Tutorial Lectures, R. Focardi and F.

Gorrieri, Eds. Lecture Notes in Computer Science, vol. 2171. Springer-Verlag.

DENECKER, M. AND SCHREYE, D. D. 1998. SLDNFA: An abductive procedure for abductive logic

programs. J. Logic Progr. 34, 2, 111–167.

EITER, T., GOTTLOB, G., AND LEONE, N. 1997. Abduction from logic programs: Semantics and com-

plexity. Theor. Comput. Sci. 189, 1-2, 129–177.

FERRAIOLO, D. F., SANDHU, R., GAVRILA, S., KUHN, D. R., AND CHANDRAMOULI, R. 2001. Proposed NIST

standard for role-based access control. ACM Trans. Inform. Syst. Secur. 4, 3, 224–274.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Pro-
ceedings of the 5th International Conference on Logic Programming (ICLP’88), R. Kowalski and

K. Bowen, Eds. MIT-Press, 1070–1080.

KAPADIA, A., SAMPEMANE, G., AND CAMPBELL, R. H. 2004. Know why your access was denied: Regu-

lating feedback for usable security. In Proceedings of the 11th ACM Conference on Computer and
Communications Security. ACM Press, 52–61.

KOSHUTANSKI, H. AND MASSACCI, F. 2005. Interactive credential negotiation for stateful business

processes. In Proceedings of the 3rd International Conference on Trust Management (iTrust).
Lecture Notes in Computer Science, vol. 3477. Springer-Verlag, 257–273.

KOSHUTANSKI, H. AND MASSACCI, F. 2007. A negotiation scheme for access rights establishment in

autonomic communication. J. Netw. Syst. Manag. 15, 1, 117–136. Springer.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO, F. 2006.

The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic.

http://www.arxiv.org/ps/cs.AI/0211004.

LI, J., LI, N., AND WINSBOROUGH, W. H. 2005. Automated trust negotiation using cryptographic cre-

dentials. In Proceedings of the 12th ACM Conference on Computer and Communications Security.

ACM Press, 46–57.

LI, N., GROSOF, B. N., AND FEIGENBAUM, J. 2003. Delegation logic: A logic-based approach to dis-

tributed authorization. ACM Trans. Inform. Syst. Secur. 6, 1, 128–171.

LI, N., MITCHELL, J. C., AND WINSBOROUGH, W. H. 2002. Design of a role-based trust-management

framework. In Proceedings of the IEEE Symposium on Security and Privacy (S&P’02). IEEE

Press, 114–130.

LYMBEROPOULOS, L., LUPU, E., AND SLOMAN, M. 2003. An adaptive policy based framework for net-

work services management. J. Netw. Syst. Manag. 11, 3, 277–303.

NEJDL, W., OLMEDILLA, D., AND WINSLETT, M. 2004. PeerTrust: Automated trust negotiation for

peers on the semantic web. In VLDB Workshop on Secure Data Management (SDM). Lecture

Notes in Computer Science, vol. 3178. Springer, 118–132.

SALTZER, J. H. AND SCHROEDER, M. D. 1975. The protection of information in computer systems.

Proc. IEEE 63, 9, 1278–1308.

SEAMONS, K. AND WINSBOROUGH, W. 2002. Automated trust negotiation. US Patent and Trademark

Office. IBM Corporation, patent application filed March 7, 2000.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

Interactive Access Control for Autonomic Systems • 9:31

SHANAHAN, M. 1989. Prediction is deduction but explanation is abduction. In Proceedings of the
11th International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1055–1060.

SLOMAN, M. AND LUPU, E. 1999. Policy specification for programmable networks. In Proceedings
of the 1st International Working Conference on Active Networks. Springer-Verlag, 73–84.

SMIRNOV, M. 2003. Rule-based systems security model. In Proceedings of the 2nd International
Workshop on Mathematical Methods, Models, and Architectures for Computer Network Security
(MMM-ACNS). Springer-Verlag Press, 135–146.

SPKI. 1999. SPKI certificate theory. IETF RFC 2693.

VERBAETEN, S. 1999. Termination analysis for abductive general logic programs. In Proceedings
of the International Conference on Logic Programming. MIT Press, 365–379.

WEEKS, S. 2001. Understanding trust management systems. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (SS&P). IEEE Press.

WINSBOROUGH, W. H. AND LI, N. 2006. Safety in automated trust negotiation. ACM Trans. Inform.
Syst. Secur. 9, 3, 352–390.

WINSLETT, M., YU, T., SEAMONS, K., HESS, A., JACOBSON, J., JARVIS, R., SMITH, B., AND YU, L. 2002.

Negotiating trust in the Web. IEEE Internet Comput. 6, 6, 30–37.

WINSLETT, M., ZHANG, C. C., AND BONATTI, P. A. 2005. PeerAccess: a logic for distributed authoriza-

tion. In Proceedings of the 12th ACM Conference on Computer and Communications Security.

ACM Press, 168–179.

X.509. 2005. The directory: Public-key and attribute certificate frameworks. ITU-T Recommen-

dation X.509:2005 | ISO/IEC 9594-8:2005.

YU, T. AND WINSLETT, M. 2003. A unified scheme for resource protection in automated trust nego-

tiation. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE press, 110–122.

YU, T., WINSLETT, M., AND SEAMONS, K. E. 2003. Supporting structured credentials and sensitive

policies through interoperable strategies for automated trust negotiation. ACM Trans. Inform.
Syst. Secur. 6, 1, 1–42.

Received July 2007; revised May 2008; accepted June 2008

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 3, Article 9, Publication date: August 2008.

