
Security Assurance of Services through Digital
Security Certificates

Samuel Paul Kaluvuri
Applied Research Security&Trust

SAP Labs France
samuel.paul.kaluvuri@sap.com

Hristo Koshutanski
Computer Science Dept.

University of Malaga, Spain
hristo@lcc.uma.es

Francesco Di Cerbo
Applied Research Security&Trust

SAP Labs France
francesco.di.cerbo@sap.com

Antonio Maña
Computer Science Dept.

University of Malaga, Spain
amg@lcc.uma.es

Abstract—Service Oriented Computing (SOC) has facilitated
a paradigm shift in software provisioning models: software gets
consumed as a “service” providing enormous benefits, however
lack of security assurance of third-party services is hampering
their wider adoption in business- and security-critical domains.
Security certification typically provides the required assurance,
however applying it as is to SOC is infeasible, given that the
natural language representation of resulting certificates is a
major obstacle for typical SOC scenarios like service discovery,
service composition and so on. To overcome the limitations of
existing security certificates we present the concept of a digital
security certificate for services. It is realized by a language
which enables the representation of a security certificate in
a structured, machine processable manner that would enable
automated reasoning to be performed on them and thus make it
feasible for certified security features to be part of typical SOC
scenarios.

I. INTRODUCTION AND MOTIVATION

Service Oriented Computing (SOC) has facilitated a
paradigm shift in software provisioning models, such as Soft-
ware as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS). These new provisioning
models relieve consumers from the complexity of procuring
and maintaining large-scale IT infrastructures, and provide
significant economic benefits [1]. However, in such provision-
ing models, the consumer no longer has full control over the
software used, nor its operational environment.

This lack of control, especially in critical domains such
as finance, defence and healthcare, raises concerns about
the security of these services [1]. Pre-established trust re-
lations between consumers and providers, such as Service-
Level Agreements, traditionally represent a mitigation to this
situation. But they can be hardly established in a dynamic
and scalable manner, that would fit in the service environment
as new and cost-attractive offerings, from different service
providers, are frequently launched. In traditional software pro-
visioning models, security certification of software by trusted
third party entities is used to provide security assurance to
consumers. Certification schemes such as Common Criteria [2]
are well established and quite successful in providing the
required security assurance to consumers in a scalable manner.
However, current certification schemes result in certificates that
are represented in natural language, which do not cope well
with the dynamic service environment.

For service consumers, the possibility to compare the
(certified) security features of a service with their security re-

quirements is a relevant aspect in the service selection process.
However, security certificates represented in natural language
prevent any sort of automated reasoning to be performed on
them, and consequently neglect an adequate scalability of the
selection process.

In order to make security certification beneficial in Ser-
vice Oriented Computing (SOC), several modifications to
the current state of the art are necessary [3]. Among them,
this paper focuses on those related to the security certificate
representation. In this regard, we have identified the following
key requirements that need to be addressed in order to facilitate
security certificate adoption in SOC.
Requirement R1: the security certificates must be machine
processable in order to allow automated reasoning to be
performed on them.
R2: security certificates should contain enough information
about the certified entity so that they can cater to consumers
with varying levels of security knowledge, such as regular
users with limited security understanding to security experts
of organizations. In other words, it is necessary that the
certificates are descriptive [4], meaning, that they describe with
sufficient details the security features of their services, together
with supporting evidences.
R3: Mechanisms must exist in order to bind a service and
its security certificate, given that a service implementation
can change, while maintaining the same external interface or
API. Consumers would need to have trustworthy and dynamic
means to verify whether a service implementation they are
using is the certified one.

Paper Contribution: We present our proposal for a digital
security certificate concept (from now on referred as CRT ),
that in our view addresses the mentioned security certification
issues in SOC. In fact, CRT s are designed to be machine
readable (and thus addressing R1). They are designed to cope
with existing web service interaction models and standards,
thus to ease their adoption and integration in SOC. Moreover,
CRT s are designed to be completely descriptive and thus
allowing automated reasoning upon them (to cope with R2).
In particular, CRT s can provide evidence of the presence
and implementation of a service’s security features, that are
collected through a service evaluation phase; this permits
further customer analysis, with respect to specific security
requirements (R2). The binding between a service implemen-
tation and its security certificate (R3), even though it is a
significant aspect, is not in the scope of this paper, even if the
current form of CRT foresees a specific element for addressing



this issue.

The paper is structured as follows: Sect. II describes a
SOC scenario for the application of the CRT concept, while
Section III presents the state of the art in security certification
and digital certificates. Sections IV and V depict different
aspects of the CRT , respectively its conceptual model and
its technical representation. The CRT contribution to achieve
security assurance is discussed in Sect. VI, and the following
Sect. VII concludes the paper.

II. SCENARIO

Digital Security Certificates can impact on many SOC
aspects. One typical application scenario is represented by an
assessment of a service’s security features during a service
discovery process. Let us consider the example of a hypo-
thetical cloud storage service, Titanium Box. We assume that
the service runs on the Apache CXF framework, and uses
Amazon S3 service in the back-end to store the user files after
encrypting them. This architecture is similar to the popular
cloud storage service, Dropbox [5].

When such a service undergoes security certification pro-
cess, similar to the Common Criteria, it results in a security
certificate that is captured in human readable form. Clearly,
such a certificate does not allow automated reasoning to be
performed, thus not supporting assessments and comparisons
among alternatives which is essential in scenarios such as
service discovery. In the next sections, we present the concept
of a Digital Security Certificate , and we will use Titanium
Box description to materialize its relevant parts.

III. RELATED WORK

1) Security Certification Schemes: A survey of the current
security certification schemes reveals that there are quite a few
established and successful schemes such as Common Criteria
for Information Security (CC), Commercial Product Assurance
(CPA) and so on. Security certification schemes can be broadly
classified based on the domains that they are applicable in,
the recognition of the certification schemes, the descriptive or
normative character of the issued certificates and so on. Among
the existing schemes, CC is a widely recognized [6], used [7],
multi-domain [8], partially descriptive certification scheme [9].
The CC scheme is very generic, as it aims to evaluate security
of products that range from software, firmware to hardware.
It avoids an all or nothing benchmark, by providing security
assurance at varying levels, called Evaluation Assurance Levels
(EAL), this provides flexibility for product vendors to get
their product certified at lower assurance levels and improve
the EAL over time. The CC scheme is primarily “claims”
based, where the vendor makes claims about the security
functionalities in the product in a document called “Security
Target” (CC-ST) [10]. However, consumers can specify their
requirements in a document called “Protection Profile” (CC-
PP), and vendors can build products that conform to a Protec-
tion Profile (and claim conformance in the CC-ST). The CC-
ST is the descriptive part of the CC scheme, containing the
Target of Evaluation (CC-TOE) and the standardized Security
Functional Requirements (SFRs) [11] and Security Assurance
Requirements (SARs) [12] that are met by the product. The
standardized SFRs and SARs are the “common” part of the CC

scheme allowing, in theory, comparison of security features of
certified products.

However, in practice, the comparison of products which
have different “claims” can be very hard. This is due to the
representation of the CC related documents (CC-PP, CC-ST)
in natural language, which is often filled with legalese and
heavy security jargon making it rather complex to understand
for non-security experts. Hence it becomes extremely difficult
to determine if a particular product satisfies a consumer’s se-
curity requirements and to compare different products against
their requirements. It was observed [3] natural language rep-
resentation of certificates is not a scalable solution when
we consider service marketplaces such as Google Apps for
business, Salesforce etc. There, the analysis of thousands of
application/service offerings and their human readable security
certificates would represent an unsustainable burden for cus-
tomers; though the availability of security certificates could
represent a means to gain assurance on offerings, it cannot
facilitate any sort of automated reasoning such as compare
and/or contrast the security properties of different services. It
also prevents consumers to search for services based on not
only their functional but also security requirements.

2) Lack of digital representation of Security Certificates:
The resulting security certificates from current security cer-
tification schemes are not represented in a digital format.
Although there are a few “digital security seals” such as the
TRUSTe privacy seal [13], McAfee SECURE seal [14] and
so on, these seals are purely normative statements regarding
the security feature of an entity, which can be seen as a step
towards digital security certificates, but cannot provide any
meaningful assurance to consumers as they do not contain any
information regarding the certified entity.

3) Container for Digital Security Certificates: In order to
facilitate an easier and faster adoption of CRT s in the SOC,
we choose to use the existing standards as Containers for the
CRT . In this regard, we have considered the digital certificate
standards, that are primarily used for identity and authorization
management, as possible candidates given their widespread
usage and acceptance. Among the existing standards, X.509
[15], SAML [16] are the most widely used in practice. Both
standards support public-key (identity) certificates and attribute
certificates for purposes of user authentication and authoriza-
tion. The attribute certificates of X.509 and SAML standards
support extensibility of the attribute part of the certificate to
accommodate domain-specific data. This aspect makes both
standards suitable to provide a PKI-compliant container for
encapsulating the content of CRT s.

IV. CONCEPTUAL MODEL OF A SECURITY CERTIFICATE

The conceptual model for the CRT , is designed to capture
information emanating from security certification processes.
In particular, we have considered the CC scheme, as it is the
most widely used scheme currently. The CC-ST, which is the
descriptive part of the CC scheme, serves as a foundation for
our CRT . However, we have extended this significantly, in
order to make it machine processable (R1) and suitable for
service-specific needs. In contrast to CC, and other existing
certification schemes, the digital security certificate is designed
to be completely descriptive [4] (R2), and hence it contains the



description of the certified entity, the security properties of the
certified entity, the evaluation details that prove the certified
properties.

Definition 1. The digital security certificate is a tuple CRT =
hSD,SPS, ESD,UDEi where, SD is the service description,
SPS is the security property specification, ESD is the evalu-
ation specific description and UDE is User defined extensions.

The SD provides details about the service and its un-
derlying architecture, thereby mitigating the concerns of the
consumers on the lack of transparency of services since
services just expose an interface and the internal dynamics of
the service and its architecture are hidden from the consumer.
The SPS provides details about the security properties of the
service at varying levels of abstraction. The ESD provides
details regarding the evaluation process and its results, such
as the test suites that were executed or the formal models and
proofs used to verify and validate the security properties of
the service. While the User Defined Extensions (UDE) can be
either used by the service providers to disclose any additional
information and/or by the certification authorities to state any
further criteria. These four elements serve different purposes
and together contribute in providing assurance on the security
of the service.

A. Service Description

In (CC-ST), the assets are described in natural language
and no identifiers are provided for them; therefore, an explicit
link cannot be made between the security properties and the
assets that they secure. In order to overcome this we adopt
a asset-centric approach with explicit references between the
assets and the different elements in the certificate.

Definition 2. An Asset, a, is an entity that is of some value to
the consumer or the provider. Assets can be data, applications,
the IT equipment on which the service operates or even users
of the Information System.

The CC-ST contains the Target of Evaluation (TOE) that
describes the system that is being certified and the the bound-
aries of the evaluation are indicated, albeit in an ad-hoc man-
ner. However for a machine readable certificate there should
be a clear distinction between the system that is being certified
and the aspects of the system that are subject to evaluation. It
is of utmost importance in service based systems, due to the
fact that services can be easily composed of external services
and this information should be a part of the service description
but clearly marked as outside the scope of evaluation.

The TOE in a CC-ST also contains the system architecture,
the different components that compose the system among
other information such as configuration in which the system
is evaluated, the underlying IT architecture etc., and this is
represented in natural language accompanied by architecture
diagrams. This poses another issue in representing the TOE in
a machine processable manner. So in order to address these two
issues, we introduced an element called Target of Certification
(T OC) that describes the service being certified, in addition
the TOE which describes the part of the Target of Certification
that is evaluated.

Definition 3. A Target of Certification is a tuple T OC =
hACI,DM, T T i, where ACI is Asset-Component Identifica-
tion, DM is the Deployment and Implementation Model and
T T is the TOC Type.

Definition 4. An Asset-Component Identification is a tuple
ACI = hA, C,↵i, where A is a set of all the assets identified
for the TOC, C is a set of all the components in the TOC and
↵ ✓ A⇥ 2C maps each Asset with a set of Components.

Definition 5. The T OE is a subset of the Asset-Component
Identification. T OE ✓ ACI

The TOC Components are an integral part of the T OC
as they allow the T OC to be expressed in a modular and
structured manner. It comprises an abstract model of the
Component, the Component Model: it can be as simple as just
containing the interfaces of the component, or a more detailed
specification of the internal dynamics of the component as
deemed sufficient by the Certification Authorities. It must also
contain technical specifications of the Component, again at the
level of abstraction as deemed sufficient.

Definition 6. A Component is a tuple C = hCM, T Mi, where
CM is the component model and T M is the technical model.

We do not provide a formal definition for CM and T M
as such concepts can be considered atomic for the sake of our
work.

A Security Problem Definition (spd) is essential in a
security certificate as it provides the rationale for securing the
assets. The rationale for securing the assets can stem from the
threats that are identified for the assets by the service provider
or from the service provider’s security policy (which in turn
could be due to compliance to regulations etc.).

Definition 7. The security problem definition is a tuple spd =
hÂ, spri, where Â ✓ A is a set of assets that need to be
secured and spr is a security problem rationale for securing
the assets.

Definition 8. The security problem rationale (spr) is a union
of threats T and service provider’s security policy SSP .
spr = T [ SSP

The service description must contain the description of the
certified system, the part of the system that is evaluated and
the rationale for protecting the assets that are identified.

Definition 9. The Service Description is a tuple SD =
hT OC, T OE ,SPDi where, SPD is the set of security prob-
lem definitions(spd).

B. Security Property Specification

The CC-ST contains a vast amount of information but is
often presented in heavy-jargon; this rarely allows a consumer
(a non security expert) to get a high level perspective of
the security features provided by the software/service. Hence
we introduced a new element in the CRT model called as
“security property specification” which enables a fine grained
description of the security property that originates from a
multi-layered model. It comprises of different elements, from
abstract security properties to concrete security mechanisms.



Definition 10. An Abstract Security Property p̂ is an atomic
security attribute for an asset.

For example, abstract security properties can be confi-
dentiality, integrity, availability, authenticity, non-repudiation,
utility, privacy and so on.

Since abstract security properties by themselves do not
convey any information on how the property is applied, there is
a need for contextual information. Hence we define Contextual
Security Property.

Definition 11. A Contextual Security Property is an abstract
security property realized in a certain context. p̂c = hp̂, ci
where c is a context.

Contexts depend on the abstract security property. Abstract
security properties that are data centric such as the CIA triad
can have contexts such as transit, rest and usage. Such as
Confidentiality in rest and Integrity in transit. However these
properties still a subject, i.e., no indication of “what” is being
secured. This is addressed by the certified security property.

Definition 12. A certified security property, p, is a contextual
security property ( p̂c) applied on a set of assets (Â). p =
p̂c ⇥ Â

The (certified) security property provides a high level
overview of how an asset is secured. But this does not
provide any information on how the SPD are addressed. This
is overcome by using the concept of “Security Objectives”
similar to the CC scheme. A security objective, so, counters,
mitigates or detects a spd that is identified for the T OE and
contributes to the realization of a security property p for the
TOE.

Definition 13. A security objective is a tuple so =
hO,OT , [SPDi, where O is the objective, OT is the objective
type, [SPD ✓ SPD is a set of security problem definitions.

All the security objectives are necessary and sufficient
conditions to realize the security property. In other words,
a TOE can have a security property p if and only if all
the security objectives for the TOE are satisfied. Security
Objectives are realized by security mechanisms that should
be implemented in the TOE.

A Security Mechanism, sm, is an action, device, procedure,
or a technique that meets or opposes (counters) a threat or an
attack by eliminating or preventing it, by minimizing the harm
it can cause or by discovering and reporting it so that corrective
action can be taken. Security mechanisms refer to the security
objectives that they satisfy, and they can be mapped to specific
functional criteria of a particular certification schemes.

Definition 14. A security mechanism is a tuple sm =
hM,SFC,dSOi where, M is the mechanism that is imple-
mented, SFC is the security functional criteria of a certifica-
tion scheme and dSO ✓ SO is a set of security objectives that
the mechanism realizes.

Definition 15. A Security Property Specification is a tuple
SPS = hP,SO,SM, �, ⌘i where P is a set of certified
security properties, SO is a set of Security Objectives, SM is a

set of Security Mechanisms , � ✓ P⇥2SO maps each security
property to a set of security objectives and ⌘ ✓ SO ⇥ 2SM
maps each security objective to a set of security mechanisms.

This fine grained representation has two major advan-
tages: allows consumers with varying security understanding
to gain understanding of the security features provided by the
service (security properties to security mechanisms); allows
the certified security property to be machine processable that
enables consumers to easily search for services that match their
security requirements.

C. Evaluation Specific Details

The ESD defines the representation of the details and
results of the service evaluation process needed to support
the certified security property. The details of the evaluation
specific portion in the certificate fall beyond the scope of this
paper, however, we identified these three different categories
for evaluation of services: Evaluation through testing [17],
[18], Evaluation through formal analysis [19], and Evaluation
through ontology-based analysis [20].

V. REALIZATION OF THE CONCEPTUAL MODEL

In order to realize the conceptual model of the digital
certificate CRT , we have developed an XML-based language
that enables the representation of the certificate in a machine
processable form, which from henceforth we refer to as an
ASSERT. A detailed version of the schema can be found
in [21] and in this section we will explain its most relevant
elements using the example introduced in Section II.

A. SAML as Container of ASSERT

The management and exchange of the ASSERTS is an
important consideration for a successful implementation of
a certification ecosystem life-cycle, i.e., production, mainte-
nance, consumption of certificates. In this context, the con-
tainer of the ASSERTS assumes significant importance as it is
needed to encapsulate the certificate data into an interoperable
format that can be used with existing web service standards
and technologies. We have chosen the SAML standard [16]
as a container because it is widely used in decentralized
systems for its support for request and exchange of “SAML
Assertions”, be that for authentication or authorization of
entities, or any attributes of an entity. The SAML standard has
support for several standard profiles for usage of SAML tokens
in specifications such as WS-Security [22], WS-SecurityPolicy
[23], WS-Trust [24], etc. These aspects make SAML a good
choice to be a container for exchanging ASSERTS in service
environment. We use the SAML Assertion tokens to encapsu-
late ASSERT-specific data.

Figure 1 shows the main elements of the SAML assertion
token structure where the <Statement> element defines an
abstract statement of an assertion. We extended this element1
to provide a statement about a service’s description, its security
property along with the corresponding evidence. The standard
field Issuer in the SAML token is used as a means to cap-
ture the ASSERT Issuer’s identity (the certification authority

1similar to how SAML authentication and authorization decision statements
extend the abstract <Statement> element.



<ns1:Assertion ID="..." IssueInstant="..." Version="2.0"  

  xmlns:ns1="urn:oasis:names:tc:SAML:2.0:assertion"  

  xmlns:ns2="urn:assert4soa:assert:2.0"> 

  <ns1:Issuer/> 

  <Signature xmlns="http://www.w3.org/2000/09/xmldsig#"/> 

  <ns1:Subject/> 

  <ns1:Conditions NotBefore="..." NotOnOrAfter="..."/> 

  <ns1:Statement SerialNumber="..." Version="2.0"  

         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  

         xsi:type="ns2:ASSERTSAMLAssertionStatementType"> 

      <ASSERTCore> 

          <CertificationProcess> 

              <TargetOfCertification/>                 

              <SecurityProblemDefinition/> 

              <CertificationCriteria/>            

              <PerformedBy/>        

              <EvaluationDate/> 

          </CertificationProcess> 

          <SecurityProperty/>               

          <ServiceBinding/> 

          <ASSERT4Humans/> 

          <ASSERTSigner/> 

      </ASSERTCore> 

      <ASSERTTypeSpecific> 

          <Property/>  

          <ServiceModel/> 

          <Results/> 

      </ASSERTTypeSpecific> 

      <UserDefinedExtensions/> 

  </ns1:Statement> 

</ns1:Assertion> 

!

!

!

!

!

SAML 

ASSERT 

Fig. 1. SAML Assertion Token as Container of ASSERT Data

issuing the ASSERT). The Subject field represents the identify
of the certificate requester, which in most cases will be the
service provider. And the validity conditions and the signature
data are inherent to all security tokens.

B. ASSERT Structure

Figure 1 shows main elements of the ASSERT structure. It
has three major elements: ASSERTCore, ASSERTTypeSpecific
and UserDefinedExtensions. The ASSERTCore part contains
elements that are independent of the evaluation of a service, i.e.
the SD and the SPS elements in the conceptual model. The
evaluation information in the conceptual model, i.e. ESD, is
contained in the ASSERTTypeSpecific element, while the UDE
is captured in its namesake element UserDefinedExtensions.

1) ASSERTCore: The ASSERTCore element contains, in
addition to the SD and SPS , elements such as Service-
Binding that provides a robust link between the service and
its ASSERT, CertificationProcess that provides information
related to the certification process of a given service, and
a textual description of the certificate in the Assert4Humans
element where the certified service and the certified property
are explained in natural language for end-user comprehension.
The AssertSigner element identifies the entity that signs the
ASSERT, while the PerformedBy element in the Certification-
Process identifies the entity who performed the service evalu-
ation. Since multiple entities can be involved in a certification
process, for example the ASSERT issuing process and service
evaluation process may be undertaken by different entities,
we provide this feasibility so as to increase the accountability
during the production of certificates. In order to better illustrate
the ASSERT language we provide code excerpts from the
ASSERT of the example we provided in Section II.

<TargetOfCertification 

  Type="http://assert4soa.eu/ontology/a4s-language#Software-as-a-service"> 

  <Description>TitaniumBox is a secure file storage service…</Description> 

  <TOCComponents> 

    <TOCComponent ComponentServiceRef="SN.userdatastorage"  

      ID="TOC.service_operation_upload" 

      InTargetOfEvaluation="true"> 

      <Description>Defines an operation of a SOAP based web service of 

        TitaniumBox to upload file data.</Description> 

      <TechnicalModel> 

        <Description>Depends on the Apache CXF service framework.  

           Web service implementation is developed in Java. </Description> 

      </TechnicalModel> 

    </TOCComponent> 

    <TOCComponent ID="TOC.amazon_s3_service"  

      InTargetOfEvaluation="false"> 

      <Description>Defines a storage service offered by a third-party, Amazon, 

         used internally by the TitaniumBox for storage of user data.</Description> 

    </TOCComponent> 

  </TOCComponents> 

  <Assets> 

    <Asset ID="A.user_file" 

      Type="http://assert4soa.eu/ontology/a4s-language#InputParameter"> 

      <Name>fileData</Name> 

      <APIBinding>/*/SOAP-ENV:Body//tns:fileData</APIBinding> 

      <Description>File uploaded by user to his TitaniumBox account.</Description> 

      <TOCComponents> 

        <TOCComponent TOCComponentRef="TOC.service_operation_upload"/> 

      </TOCComponents> 

    </Asset> 

    <Asset ID="A.user_file_name" 

      Type="http://assert4soa.eu/ontology/a4s-language#InputParameter"> 

      <Name>path</Name> 

      <APIBinding>/*/SOAP-ENV:Body//tns:path</APIBinding> 

      <Description>File name defined by the user.</Description> 

      <TOCComponents> 

        <TOCComponent TOCComponentRef="TOC.service_operation_upload"/> 

      </TOCComponents> 

    </Asset> 

  </Assets> 

  <DeploymentAndImplementationModel> 

    <Description>The user file data is encrypted by the TitaniumBox service  

      before the data is stored using the Amazon S3 service.</Description> 

  </DeploymentAndImplementationModel> 

</TargetOfCertification> 

!

Fig. 2. ASSERT Snippet: Target of Certification

Service Description in ASSERT Core: The SD in the
conceptual model is mapped to the CertificationProcess ele-
ment in the ASSERT language. It contains the elements such
as TargetOfCertification and SecurityProblemDefinition which
map to the T OC and SPD respectively in the conceptual
model. In addition, we have incorporated an element called
CertificationCriteria used to represent any specific criteria fol-
lowed during the service certification process (e.g., compliance
to regulations).

The TargetOfCertification element is depicted in Figure 2.
The elements in the ACI are represented directly in the
TargetOfCertification element i.e., the Assets, TOCCompo-
nents. It also contains the Type, DeploymentAndImplemen-
taionModel and Description providing textual description of
the TargetOfCertification for end-user comprehension. We en-
force the explicit identification of both the Assets and TOC-
Components by making the use of the ID element mandatory.
The set that maps assets with components, ↵, in the ACI is
realized within the asset definition by mapping each asset to
specific components using the TOCComponentRef (which is
of type IDRef ) to provide a binding between the assets and
components.



<SecurityProperty 

 PropertyAbstractCategory="http://assert4soa.eu/ontology/security#Confidentiality" 

 PropertyContext="http://assert4soa.eu/ontology/a4s-language#InStorage"> 

 <Description>Confidentiality of user file data in storage.</Description> 

 <NameID>confidentiality_in_storage_TitaniumBox_service</NameID> 

 <Assets> 

   <Asset AssetRef="A.user_file"/> 

   <Asset AssetRef="A.user_file_name"/> 

 </Assets> 

 <SecurityObjectives> 

   <SecurityObjective ID="O.user_data_protection" 

     Type="http://assert4soa.eu/ontology/a4s-language#DataProtection" 

     Scope="http://www.assert4soa.eu/ontology/a4s-language#TOE"> 

      <Name>User data protection in storage</Name> 

      <SecurityProblemDefinitionRef ProblemDefinitionRef="SPD.data_access"/> 

      <Description>The TitaniumBox storage service must provide means of 

        protecting user file data from disclosure to any third-party...</Description> 

   </SecurityObjective> 

 </SecurityObjectives> 

 <SecurityMechanisms> 

   <SecurityMechanism  

     Type="http://assert4soa.eu/ontology/usdl-sec#Cryptography"> 

     <Name>AES-256</Name> 

     <Description>High-grade symmetric encryption... </Description> 

     <SecurityObjective SecurityObjectiveRef="O.user_data_protection"/> 

     <SecurityFunctionalCriteria Scheme="CC"> 

           FCS_COP.1.1</SecurityFunctionalCriteria> 

   </SecurityMechanism> 

 </SecurityMechanisms> 

</SecurityProperty> 

!

Fig. 3. ASSERT Snippet: Security Property Specification

The TOE is not represented as an explicit part of the
service description in the ASSERTCore, but we use the flag
InTargetOfEvaluation in the TOCComponent element that in-
dicates whether the component is a part of the TOE, and avoids
a duplicate representation of the components in both the TOE
and TOC to have an optimized ASSERT.

The SecurityProblemDefinition element in the ASSERT-
Core contains a list of ProblemDefinition. Each ProblemDefi-
nition is mapped to the spd in the conceptual model.

Security Property Specification in ASSERT Core: The
SecurityProperty element maps to the p element in the con-
ceptual model. However, on the representation (language) level
we have defined a single property certified in ASSERT. Such
“separation” of certified properties allows us to have practical
implications on management of ASSERTs throughout their
life-cycle, such as issuance, consumption (reasoning), and
revocation of ASSERTs. For example, if an ASSERT certifies
two properties, say “confidentiality in transit” and “confiden-
tiality in storage”, and during the ASSERT lifetime the given
service does not anymore comply/provide “confidentiality in
transit” due to some technical reasons, the certification author-
ity has to revoke the ASSERT although the second property
may still hold.

Figure 3 shows the SecurityProperty element structure
consisting of an abstract security property realized in a context
and on a set of assets. The SecurityProperty contains a NameID
that defines a name identifier of the described property. The
NameID allows reference to external ontologies to describe
the certified security property. The PropertyAbstractCategory
defines the abstract category of the security property. The
PropertyContext element defines a context in which the ab-
stract security property is realized. The Assets defines a set of
Asset elements on which the security property applies. Each

Asset element is a reference to an Asset definition in the
TargetOfCertification section.

The SecurityObjectives defines a set of SecurityObjective
elements of the security property. The main elements of
the SecurityObjective are: a) an identifier of the described
security objective; b) a set of SecurityProblemDefinitionRef
each referring to a ProblemDefinition defined in the Securi-
tyProblemDefinition section; c) Name that contains the name
of the security objective; d) Description which describes
the security objective. It is an implicit assumption that all
SecurityObjectives together contribute to the realization of the
SecurityProperty. A SecurityObjective can refer to one or more
ProblemDefinitions.

The SecurityMechanisms defines a set of SecurityMecha-
nism elements. Each element consists of an ID that identifies
the security mechanism, the Type of the security mechanism
(or the family of the security mechanism), a set of SecurityOb-
jectiveRef elements each referring to a security objective that
the seurity mechanism corresponds to. A SecurityMechanism
can refer to one or more SecurityObjectives.

2) Evaluation Specific Details in an ASSERT: The three
different categories of evaluation are referred as ASSERT-E -
for test based evaluation, ASSERT-M - for formal analysis and
ASSERT-O - for ontology based evaluation. We identified three
abstract elements that are common to the different types of
evaluation: TypeSpecific-Property specification, ServiceModel
specification, and Results of evaluation. These elements facil-
itate advanced reasoning to be performed on the certificates,
by comparing and contrasting services based on the evaluation
details such as the cardinality of the test suites, the number
of tests executed and so on [17]. These elements depend on
the processes and the results of each evaluation type and
require different syntactic structures. However, we consider
such details to be outside the scope of this paper as it would
involve discussing the current evaluation methodologies and
practices. The ASSERT language, at this point, supports a
choice between the three evaluation types, thus restricting an
ASSERT to have one type of evidence. This is needed as the
evaluation processes and the results from the three different
categories are heterogeneous in nature and having multiple
types of evidences in a single ASSERT would complicate the
processing of the ASSERT especially in certificate comparison.

C. Ontology Integration for Enhanced Processability

In the conceptual model we have presented the elements
that need to be captured in a digital security certificate and
we have presented a language through which we realize this
conceptual model in a machine processable manner using
SAML Assertions. However, the ASSERT language provides
a data structure to represent the certificates but it does not
provide nor prescribe the data that should be contained in the
data structures. This is an intentional choice in order to have a
clear separation between the conceptual model, the realization
and the actual content of the certificates, that for instance
would ease the adoption of CRT with different certification
schemes and evaluations.

Therefore, the ASSERT language elements should make
use of vocabularies, that could be defined by different certi-
fication authorities for their respective schemes based on the



certification/evaluation processes and the types of products that
are certified.

Vocabularies can make of the existing security ontologies
to describe different elements in the ASSERT language, thus
permitting reasoning on them, also taking benefit from the
Linked Open Data paradigm, with respect to establish a link to
other ontologies. An example of this flexibility is represented
by the use of an ontology, called USDL-SEC 2, for expressing
the security mechanisms in the ASSERT language, while
specific vocabularies are also foreseen for the expression of
other ASSERT elements, like for security properties.

VI. SECURITY ASSURANCE THROUGH ASSERTS

The main objective of a security certificate of a service is to
provide security assurance to potential consumers. The existing
security certification schemes certify products at varying levels
of assurance. The number of levels and the type of assurance
depends on the certification scheme. Each certification scheme
fixes these levels based on carefully designed and selected
criteria. In the CRT there is no explicit element defined for
these “levels” of assurance, which is an intentional choice
as the CRT is designed to be certification scheme agnostic.
However, the UDE element can be used to represent these
certification scheme-specific information.

The levels of assurance provided by the current schemes
distinguish certified products based on security features (such
as FIPS-140) or the rigour of evaluation (such as CC, CPA).
However, “security assurance” is a multi-dimensional property
that amalgamates assurance gained from security features of
the product, evaluation of the product, etc. Hence, the levels
of assurance provided by the existing schemes are a part of
the overall security assurance that a consumer gains from
the certificate. We have identified some of the aspects that
can impact the security assurance provided to a consumer: i)
the rigour of the evaluation; ii) the trust that the consumer
has on the certificate issuer and evaluators; iii) the extent of
information that is provided in the CRT .

(i) Assurance from Evaluation: The consumer can know
the rigour of evaluation either from the “level” of evaluation
that is provided by the certification authorities using the UDE
or from the content in the ESD in case the certification
authorities and the product owners are willing to disclose
the evaluation information which would make the certificate
completely descriptive.

(ii) Assurance from Certification Entities: Since the
security certification process involves multiple entities, e.g.,
certificate issuers, evaluators, the strength of the assurance
gained depends on the identity of these entities. That is,
the assurance gained from certificates depends on the trust
the consumer has on the certificate issuers and evaluators.
Since the ASSERT language is certification scheme agnostic,
it enables product vendors to issue self-signed ASSERTS.
This is important in order to allow the usage of ASSERTS
in huge ecosystems, where the service provider would want
to provide security assurance of their services to consumers
but they cannot afford to go through a security certification
process (which might be the case for small developers) or

2http://linked-usdl.org/usdl-sec

in cases where they cannot afford the time to go through
the certification process (in cases, where time to market can
be crucial) or in cases where the recognized certification
authorities are not available in their countries. Self signed
ASSERTS, clearly, will provide a lower assurance since it is
the service provider himself issuing these ASSERTS.

(iii) Assurance from Disclosure: In the service environ-
ment, the consumer does not have any information regarding
the service internals or its architectures and so on. This lack
of transparency affects the overall assurance that that can be
gained by the consumer, despite having a certificate. Since
the ASSERT allows service providers to disclose the service
internals and its architectures at a level that is suitable for them
by using the SD. The SPS which is tied to an asset, provides
consumers information on how their assets are secured. The
ESD provides more assurance to consumers by providing
information on how the service has been evaluated and the
results of the evaluation process.

Overall Security Assurance: The overall security assur-
ance that a consumer can gain from the CRT is a function
of consumer criteria over: Evaluation, Certificate Issuer and
Evaluator and Information Disclosed in the certificate.

Consumer criteria can depend on several factors, for ex-
ample, in very sensitive domains such as healthcare, financial,
defence etc., self signed certificates might not be considered
as providing any assurance or in the case of governmental
organizations, they only consider certificates issued by a few
certification authorities.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the need for security assurance
of services and how current security certificates do not scale
well to service environments, and we identified a number of
requirements for the use of security certificates in SOC. To
address them, we presented an approach for a structured and
machine processable representation of the security certificates
of services. For its implementation, we have proposed an XML
based language that also aims at facilitating the adoption of
security certificates in service oriented provisioning and con-
sumption (requisite R1 defined in Sect. I), by taking advantage
of SAML Assertions. We also showcased the possibility of
using different ontologies to create the digital certificates as
an initial step towards full reasoning on certificate contents
(requisite R2). Finally, we have discussed how assurance can
be gained from these digital certificates and the different
dimensions to be taken into account while computing the
assurance.

There are still a number of open issues that we are currently
working on: first of all, we are conducting a validation of our
approach with domain experts, especially focusing on the CC
scheme. Secondly, we are investigating on the establishment
of a robust binding between services and their corresponding
certificates (requisite R3) – solutions to which can be either
purely legal solutions, purely technical solutions by using
TPMs3 for remote attestations or could be a hybrid solution.
We are also validating the TOC representation to ensure that

3Trusted Platform Module - that resides on the platform on which the service
is run on



it can cope with the different service architectures (PaaS, SaaS
and so on).

Another direction of future work is to bring the concept of
an ASSERT profile [25] in the SOC domain. It is used to fa-
cilitate: a) easier comparison among ASSERTS; b) production
of ASSERTS compliant to certification authorities’ criteria; c)
consumers to specify their security requirements similar to the
CC-PP. When services comply to such ASSERT profiles, it
eases the decision making process for the consumers as the
compliance to a profile implies that their requirements are met
by the service.

Last but not least, there are several ongoing efforts [26],
[27] for making use of digital security certificates. They
specially focus on the development of tools with automated
reasoning capabilities on the certified security features, and
also including their preliminary validation: a tool with such
reasoning capabilities can facilitate, for example, analysis and
comparison in service discovery operations by partial ordering
of certified security properties of different services.

To conclude, we claim that the ASSERT adoption can
represent significant benefits for an uptake of third-party
service offerings in business-critical domains such as financial,
defence and healthcare [28]. The digital security certificates
provide security assurance of services that would allay the
security concerns of potential customers, which is one of the
most relevant obstacles nowadays [1]. Moreover, their scala-
bility would permit a large scale usage in contexts like service
marketplaces; for instance, it would permit customers to use
their security requirements for service browsing, discovery and
selection processes, taking advantage of support tools based
on automated reasoning on the certified security features of
different offerings.

ACKNOWLEDGMENT

This work was partly supported by the EU-funded project
ASSERT4SOA (grant no. 257361).

REFERENCES

[1] Gartner, “Forecast overview: Public cloud services,” report G00234817,
2012.

[2] T. C. C. R. Agreement, “Common criteria for information technology
security evaluation part 1 : Introduction and general model july 2009
revision 3 final foreword,” NIST, vol. 49, no. July, p. 93, 2009.
[Online]. Available: http://www.commoncriteriaportal.org/files/ccfiles/
CCPART1V3.1R3.pdf

[3] V. Lotz, S. P. Kaluvuri, F. Di Cerbo, and A. Sabetta, “Towards
Security Certification Schemas for the Internet of Services,” in New
Technologies, Mobility and Security (NTMS), 2012 5th International
Conference on, May 2012, pp. 1–5. [Online]. Available: http:
//dx.doi.org/10.1109/NTMS.2012.6208771

[4] K. Wallnau, Software component certification: 10 useful distinctions,
ser. Technical note. Carnegie Mellon University, Software Engineering
Institute, 2004.

[5] Dropbox inc., “Dropbox security overview,” 2012. [Online]. Available:
http://www.dropbox.com/dmca#security

[6] Common Criteria, “Common criteria recognition agreement,” 2012.
[Online]. Available: http://www.commoncriteriaportal.org/ccra/

[7] ——, “Common criteria: Certified products list - statistics,” 2012. [On-
line]. Available: http://www.commoncriteriaportal.org/products/stats/

[8] Lachlan Turner, “How the cc intersects and compares with other
security evaluation programs and what this means for the rest of
us.” 2009. [Online]. Available: http://www.yourcreativesolutions.nl/
ICCC10/proceedings/doc/pp/DOMUS.pdf

[9] B. Beckert, D. Bruns, and S. Grebing, “Mind the gap: Formal ver-
ification and the Common Criteria,” in 6th International Verification
Workshop, VERIFY-2010, M. Aderhold, S. Autexier, and H. Mantel,
Eds., Edinburgh, United Kingdom, Jul. 20–21 2010.

[10] Common Criteria, “Common Criteria Part 1: introduction and general
model,” 2012. [Online]. Available: http://www.commoncriteriaportal.
org/files/ccfiles/CCPART1V3.1R4.pdf

[11] ——, “Common Criteria Part 2: security functional requirements,”
2012. [Online]. Available: http://www.commoncriteriaportal.org/files/
ccfiles/CCPART2V3.1R4.pdf

[12] ——, “Common Criteria Part 3: security assurance requirements,”
2012. [Online]. Available: http://www.commoncriteriaportal.org/files/
ccfiles/CCPART3V3.1R4.pdf

[13] P. Benassi, “Truste: an online privacy seal program,” Commun.
ACM, vol. 42, no. 2, pp. 56–59, Feb. 1999. [Online]. Available:
http://doi.acm.org/10.1145/293411.293461

[14] McAfee, “Mcafee SECURE,” 2007. [Online]. Available: http://www.
mcafee.com/us/mcafeesecure/index.html

[15] X.509, “The directory: Public-key and attribute certificate frameworks,”
2005, ITU-T Recommendation X.509:2005 | ISO/IEC 9594-8:2005.

[16] SAML Specification, “SAML specification,” 2012. [Online]. Available:
http://saml.xml.org/saml-specifications

[17] M. Anisetti, C. Ardagna, and E. Damiani, “Defining and matching test-
based certificates in open SOA,” in Proc. of the Second International
Workshop on Security Testing (SECTEST 2011), 2011, pp. 520–522.

[18] M. Anisetti, C. A. Ardagna, E. Damiani, C. Pandolfo, and A. Maña,
“D4.1 Design and description of evidence-based certificates artifacts
for services,” ASSERT4SOA Project, Tech. Rep., 2011, available at
http://www.assert4soa.eu/deliverable/D4.1.pdf.

[19] A. Fuchs and S. Gürgens, “D5.1 Formal models and model com-
position,” ASSERT4SOA Project, Tech. Rep., 2011, available at
http://www.assert4soa.eu/deliverable/D5.1.pdf.

[20] S. D’Agostini, V. Di Giacomo, C. Pandolfo, and D. Presenza, “An
ontology for run-time verification of security certificates for SOA,” in
Proc. of the 1st International Workshop on Security Ontologies and
Taxonomies (SecOnt 2012), 2012, pp. 525–533.

[21] H. Koshutanski, A. Maña, R. Harjani, M. Montenegro, S. P.
Kaluvuri, F. Di Cerbo, E. Damiani, C. A. Ardagna, M. Anisetti,
D. Presenza, S. Gürgens, R. Menicocci, V. Bagini, F. Guida, and
A. Riccardi, “ASSERT language v2,” ASSERT4SOA Consortium,
Project Deliverable D1.2, 2012. [Online]. Available: http://www.
assert4soa.eu/deliverable/D1.2.pdf

[22] OASIS, “OASIS WS-Security specification,” 2006. [Online]. Available:
https://www.oasis-open.org/committees/tc home.php?wg abbrev=wss

[23] OASIS, “OASIS WS-SecurityPolicy specification,” 2007. [Online].
Available: http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
ws-securitypolicy-1.2-spec-os.html

[24] ——, “OASIS WS-Trust specification,” 2007. [Online]. Available:
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

[25] A. Maña, H. Koshutanski, J. Gonzalez, M. Montenegro, R. Menicocci,
A. Riccardi, V. Bagini, F. Di Cerbo, and S. P. Kaluvuri, “D1.3
ASSERT profiles,” ASSERT4SOA Project, Tech. Rep., 2012, available
at http://www.assert4soa.eu/deliverable/D1.3.pdf.

[26] K. Mahbub, L. Pino, G. Spanoudakis, H. Foster, A. Maña, and
G. Pujol, “D2.3 ASSERTs aware service based systems adaptation,”
ASSERT4SOA Project, Tech. Rep., 2012, available at http://assert4soa.
eu/deliverable/D2.1.pdf.

[27] M. Bezzi, S. D’Agostini, S. Kaluvuri, A. Maña, C. Pandolfo,
G. Pujol, and A. Sabetta, “D6.1 architecture and high-level design,”
ASSERT4SOA Project, Tech. Rep., 2012, available at http://www.
assert4soa.eu/deliverable/D6.1.pdf.

[28] F. Di Cerbo, M. Bezzi, S. Kaluvuri, A. Sabetta, S. Trabelsi, and
V. Lotz, “Towards a trustworthy service marketplace for the future
internet,” in The Future Internet, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, vol. 7281, pp. 105–116.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-30241-1 10


