
26

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

Towards User-centric Identity Interoperability for
Digital Ecosystems

Hristo Koshutanski
Computer Science Department
University of Malaga (Spain)
Email: hristo@lcc.uma.es

Mihaela Ion
CREATE-NET Research Center

Via alla Cascata 56/D, Trento (Italy)
Email: mihaela.ion@create-net.org

Luigi Telesca
CREATE-NET Research Center

Via alla Cascata 56/D, Trento (Italy)
Email: luigi.telesca@create-net.org

Abstract—Digital Ecosystem is a new paradigm for dynamic
IT business integration. Its main focus is to provide micro- and
small enterprises with technological solutions bootstrapping their
growth and cooperation. In a Digital Ecosystem, institutions
compete in some business aspects and collaborate in others,
and thus form stable and unstable coalitions. Such a dynamic
environment becomes a bottleneck for identity management
solutions. Existing and well-researched solutions for identity
federation are either too restricting and not flexible enough to
support the dynamic nature of ecosystems or they are too complex
and difficult to adopt by small enterprises.
In this paper we present a model targeting cross-domain

identity interoperability between distributed ecosystem entities.
The model is based on the recent OASIS SAML v2.0 standard
to provide interoperability and convergence between existing
identity technologies. The paper presents the basic and extended
identity models for single services and service compositions. The
aim of this research is to allow small and medium companies
to use and enhance their current identity technology with a
practical and easy to adopt identity management solution that
scales up to the dynamic and distributed nature of digital
ecosystems.

Keywords: Identity management, Single-sign on, Digital
ecosystems, Identity interoperability, User-centric identity
profile.

I. INTRODUCTION
Digital Ecosystem (DE) [14] is an innovative multidisci-

plinary concept that explains how dynamic business coalitions
can be supported through an open IT environment. DE are a set
of open standards, joint infrastructure and advanced services
supporting the dynamic evolutions of business relations and
virtual organizations over time.
DE complements current Service Oriented Architectures

(SOA) with a sustainable approach that overcomes the lim-
itations of SOA. SOA provides service composition oppor-
tunities only though a high level ”centralized” architecture
and broker/integrator coordination. SOA/WS standards can, in
fact, facilitate services integration only in the context of a well
defined business domain where a big player can dictate certain
rules, standards (even proprietary) and/or basic communication
conditions.
However, software interoperability and integration are to-

tally different in the context of a whole industry, where
a role of business broker is not well specified in advance
and can change over time based on market conditions and

target markets. In this context, establishing a certain level of
control and coordination, even in modest amounts, is very
difficult. The justification for this non efficient behavior is
motivated by the fact that usually integrators try to lock in
other players (usually suppliers) in order to avoid vertical and
even horizontal competition controlling the supply chain and
the evolution of the target markets.
Digital Ecosystem aim to overcome those limitations. DE

provides a Peer to Peer (P2P), interoperable, service infrastruc-
tures supporting the dynamic nature of the business ecosys-
tems. DE is therefore an open, decentralized, communication
and service infrastructure populated by networked agents (big
and small and medium enterprises, service brokers, public
bodies, end users), data, knowledge models and software
services supporting the interaction of the above mentioned
”species” and the evolution of the open ecosystem. Thanks to
this open (joint ownership of the infrastructures) and friendly
approach DE provides new infrastructure enablers that can
facilitate the fast deployment of services by Small and Medium
companies (SMEs) or even individuals.
In such dynamic environment agents are able to evolve

dynamically through incessant transactions, alliances, adap-
tation and composition of service offerings. They negotiate
(cooperating and competing) with the final objective to survive
to market competition while increasing their wealth (not only
increasing the profits) and competitive advantage. Thanks to
the DE approach economic actors can perform different roles
(services producers and consumers) over time and with their
active participation they can open new market opportunities,
business models and service deployment methods. Figure 1
shows the high-level stack view of a Digital Business Ecosys-
tem [15].
Current closed federation approaches are too restrictive and

not sustainable over time to support unstable alliances and
virtual coalitions. Those solutions are also very complex and
not affordable by SMEs. In this dynamic context, identity
management solutions need to be more open and easy to
use and they should be able to connect entities coming from
different business domains and using different certification
schema.
Ecosystem-oriented architectures. Today users and orga-

nizations employ a broad set of digital components, such as
software products, business services, knowledge (documents,

27

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

Fig. 1. The stack view of the Digital Business Ecosystem [15]

e-mails, portals, wikis, etc.) and data structure representing
business objects. An Ecosystem Oriented Architecture (EOA)
[4] can be defined as a meta-level architecture for DE, allowing
for the description of digital components and processes that
are involved. The idea behind EOA is the extension of the
classical SOA in a distributed and semantic rich architecture
designed to support the interoperability and the integration
of the different processes that characterize a DE. In an EOA
all the components interact together, crossing organizations’
boundaries and forming a DE that connects different systems,
and exchange information using common data representations,
like XML and other standard formats. All the EOA services are
deployed on a distributed, peer-to-peer platform and described
by business and functional models, using Unified Modeling
Language (UML), adding in this way semantic to the service
description.
This decentralized architecture defines a topology and a

replication schema that depend on a set of collaborative peer
nodes. A peer-to-peer network supports this topology, and
the data replication across the network is guaranteed by a
Distributed Knowledge Base (DKB) that stores and retrieves
contents in a smart way. The final picture is a peer-to-peer and
service oriented architecture with high integration capabilities
offered by the adoption of open standards where the gap
between business abstraction and software implementation is
bridged by the adoption of model driven methodologies.
Identity technologies. Institutions use different types of

authentication and and identity certificate technologies such
as X.509 [26], SPKI [17], Kerberos [11], SAML [16] etc,
which are not always compatible and interoperable with each
other. Users often need to access applications, services or
a composition of services located at different administrative
domains.
WS-Policy [24], WS-Trust [25] and WS-Federation [23]

cover a wide range of requirements and at the same time
are difficult to suit immediately for small and medium size

enterprises (SMEs). Existing standards are heavy and difficult
to understand, and require a high-cost and longer term deploy-
ment, and therefore suitable for large enterprises.
What SMEs in DEs need is a simple and easy do adopt

model that allows them to enhance their current identity
technology with an extension to identity interoperability man-
agement [12].
Paper contribution. Our approach aims at automating

the process of identification between ecosystem partners. We
emphasize on practical solutions which are clear and easy
to implement. The model is based on the new SAML (v2.0)
standard [16] for providing proper identification. SAML faces
interoperability on the message level and helps to automate and
converge when the technologies are not compatible. We face
distributed identity storage by the use of user profiles. A user
profile is an abstract view of a client’s identity information that
is stored in a decentralized manner. Decentralization is faced
by use of peer-to-peer replication of user profiles on trusted
nodes, part of DKB.
The paper is organized as following. Section II defines the

core model functionalities scaling to DE’s nature. Section III
presents the model architecture with its message flow, and the
model extension to service compositions. Section IV presents
details of a possible user profile structure. Section V discusses
the concept of token transformation for interoperability with
its inherent SAML-based functionality. Section VI overviews
current identity management standards, and Section VII con-
cludes the paper.

II. IDENTITY MODEL FUNCTIONALITY

Let start by summarizing the main functionality an identity
management model for DEs should cover.
1) Dynamic trust relationship establishment and manage-
ment between identity providers across administrative
domains. Identity providers should flexibly define (new)
trust relations with other identity providers and the
relations should be easy to discover (by end-users) to
allow for dynamic, on the fly, trust discovery. The
dynamic definition of trust relationship will allow iden-
tity providers to maintain and update when their trust
relations change, which is often the case in DEs.

2) Enable single sign-on mechanism on top of the estab-
lished trust relations for decoupling a service provision
logic from an authentication (identification) process.

3) Allow user-centric identity management of available
credentials for easy discovery and identification to third
party service providers/administrative domains.

A. Single sign-on mechanism for identification abstraction

Single sign-on (SSO) mechanism has been developed to
provide separation and abstraction between a service provision
logic, and an identification process to service users. The
abstraction aims at encapsulating the management of an iden-
tification process by a third-party called an identity provider
(IdP). By adopting an SSO mechanism a service provider (SP)

28

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

offloads the burden for a proper user identification to a trusted
IdP.
When more than one SPs share a common IdP they form a

simple form of identity federation where a user with a single
sign-on can access all services under the federated SPs.
Although a SP defines a trusted IdP, still a SP provides

access to resources based on a simple form of user au-
thentication. The SP’s authentication process is a verification
process of whether a user has been identified by a trusted IdP.
Generally, an SSO mechanism can be initiated by both a SP
or a user accessing a service. The user-initiated SSO allows
users to select a user-trusted IdP that a SP should contact
for a user identification. Even though the user-initiated SSO
has several application scenarios for Web-based authentication
(e.g., OpenID SSO mechanism1), it is not suitable for our
purposes.
Our targeted SSO is the SP-initiated SSO that allows a SP

to define and maintain its own (federated on not) IdPs. Below
we describe the SP-initiated SSO case.
1) A user is accessing a service under a SP without any
login information.

2) The user is not recognized and gets redirected to a SP-
trusted IdP.

3) The user is required to sign on by providing required
credentials to the IdP (e.g., user name and password or
an identity certificate).

4) If successful authentication, the IdP redirects the user
back to the SP including information about the user
authentication, often in a form of a security token.

5) The SP, in its turn, verifies if the user authentication
has been done by the IdP (a simple authentication
process if an IdP has digitally signed user authentication
information), and gives access to the requested service.
A security context (session) is created based on the user
authentication.

Let us start by defining the key components of the model.
1) User: any entity that can be identified in the network
(peer or web browser user, institution or person)

2) Service Provider (SP): any identifiable entity that has
one or more services or resources available to other
entities.

3) Identity Provider (IdP): any entity that is able to provide
digitally signed credentials to other entities.

4) Digital Ecosystem (DE): distributed digital environment
where both partners and competitors are present and
where stable and unstable coalitions are created; coali-
tion of digitally represented partners with few or no
a priori established trust relations. Thus the notion of
ecosystem comprises cooperative and competitive rela-
tions.

We target an identity management model for decentralized
peer-to-peer ecosystem domains. All entities are considered
equal and there is no hierarchy of ecosystems. Any peer can
be an IdP or a SP, or both. Each user can issue a certificate to
1http://www.openid.net

other users. Each user has a list of trusted IdPs. Each IdP has
a list of acceptable security tokens. An IdP issues certificates
to users based on:

• security tokens issued by the provider itself, or
• security tokens issued from IdPs with whom it has trust
relationships, or

• user registration information.

B. Multiple user identities and technology standards
In a network of interconnected digital ecosystems, users and

companies use different kinds of certificates obtained from
outside the system. Companies have own X.509 certificates
issued by Certification Authorities outside the system and
which they are obliged by law to use when doing online
transactions. SMEs often have their own proprietary solutions
for identification of their employees such as user name and
password, ad hoc secure tokens or adoption of OpenID for
Web-based access.
After joining a DE, users (partners) obtain a variety of

certificate tokens issued by IdPs for particular business needs.
However, partners that already have ad hoc identity tokens
or user name/passwords authentication should be able to use
them for the sake of providing identity information to IdPs that
are to certify partners’ identity. The reason for that is to unify
identity management between partners with already existing
identity token standards.
Each IdP has the responsibility to provide proper

pseudonymity to end users. An IdP either issues a user
pseudonym on its own or allows users to define it and then
certifies the pseudonym in a security token to a SP. A SP
explicitly asks an IdP to reveal user identity in case of user
misbehavior.

C. User-centric identity profile
Having multiple identity certificates issued by different

IdPs, it becomes difficult for a user to manage and locate
all of them when needed to access a service, especially in the
case of distributed services.
Users connect to a DE either via a portal (a Web browser) or

via a rich client system installed on their computers. In either
of the cases a user needs a way to manage its credentials, user
name/passwords and public/private key pairs. For that purpose
we adopted the use of a user profile. A user profile contains all
available information about user’s identity obtained from the
user’s interactions within DEs. Its main purpose is to provide
an abstract view of what identity credentials are available,
where they are available (e.g. local or remote storage) and
how to obtain them (e.g. via authentication to an IdP by user
name/password or via an LDAP2 storage etc).
An important issue is how to allocate, store, and retrieve the

user profile. The profile contains sensitive information that is
necessary when communicating with entities in a DE. So, the
profile must be protected from unauthorized access (no one
except the owner of the file) and at the same time must be

2http://www.openldap.org

29

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

available on demand (avoid denial of service/availability). To
address these issues we adopted to keep the profile encrypted
and replicated on trusted peers. The encrypted profile is only
meaningful to its owner and reliably obtained via a trusted
peer-to-peer network as part of the DKB in DEs.
Another issue worth mentioning is the availability of a

profile to be shared (used) by multiple entities. This may
often be the case for SMEs where selected employees are
allowed to use the profile and therefore represent the company
in on-line business negotiations. A possible approach is to
define an access policy for each profile that encodes who
can use the profile and under what conditions. The access
policy is optional and if not explicitly specified it should have
the default value of only read and write permissions for the
profile’s owner. A simple and yet effective solution for the
policy model is the use of Access Control Lists3.
We adopted the concept of peer-to-peer trusted network,

as provided by the DKB of DEs infrastructure, to replicate
and provide service availability when locating and loading
user profiles. The problem of how to establish a proper
methodology for data replication is beyond the paper scope,
and some works can be found in [13], [22].
A user is required to remember a user name and a password

in order to login into a DE. The user name and password are
obtained on initial user registration to a DE. Once registered,
whenever the user logs in another (or a same) DE with its login
information, the DE’s infrastructure takes the responsibility to
allocate and retrieve the encrypted user profile.
When a user starts a new session, its profile is to be

downloaded on a secure memory (e.g. browser s-box) of
its Web browser or a local client and then decrypted. Once
decrypted the profile is ready to be used and processed by the
Web browser client or the local client. On end of a session, the
user profile is encrypted again and updated on the associated
trusted node (peer) and then replicated on other trusted peers.
In the case of a local client installed on user’s own machine,

the profile could be locally copied and stored so that it could
be loaded from the client’s machine next time. However, in
this case the profile must also be stored and replicated on other
trusted peers in order to provide availability and actualization
if shared among multiple users.
The user profile is encrypted with a long master password,

usually a key phrase, known only to a user. The master
password should be different from the user password needed
for user authentication to a DE. Thus, a user has to remember
one login information and one master password in order to
facilitate a secure profile storage.

D. Identity profile evolution over time
A user profile contains information about available identity

certificates, public/private key pairs and user authentication
information needed to access and obtain security tokens.
User identity information obtained outside DEs should be

updated (imported) in the user profile so that it can be re-used

3http://en.wikipedia.org/wiki/Access control list

when the user does business interactions with partners in DEs.
When a user first time registers to a DE and creates its initial
profile, it is requested to import the already available identity
information. However, a user can start from no identity infor-
mation and collect it on a step-by-step basis when interacting
with SPs and their trusted IdPs.
An important aspect here is the possibility of evolving user’s

identity token information dynamically, during normal user
interactions with ecosystem partners. After each interaction
with an IdP, the user’s client (web or local) automatically
records the information on the new identity token for subse-
quent use. The information stored should detail the new token,
issuer, authentication process used to obtain the token (e.g.,
by another token authentication or by user name/password),
token type, validity and location of token retrieval, refer also
to Section IV. This would allow users to dynamically discover
new trust relationships between IdPs and obtain the respective
identity tokens for proper authentication, as discussed later in
Section V-C.

E. Token transformation for interoperability: SAML approach

To approach proper identity management first we need to
define a way to cope with the incompatibility of the variety
of standards and solutions. Here we borrow the concept of
credential transformation from one type to another as already
introduced in the WS-Trust standard. To address the problem
we have to convert identity information from one certificate
technology to another one compatible with the current domain
of business.
We have to provide a way for a client identified within

one standard to be able to use its identity information when
communicating with a SP using another identity representation
standard. The issue we take into account is that SMEs may
adopt their own (ad hoc) certificate tokens or mechanisms to
manage identities of their employees.
To cope with this wide range of identity mechanisms we

make the following assumptions.
• Each SP adopts the identity standard best suiting its
needs but its trusted IdP should support as a default
authentication the SAML standard (especially v2.0). It
means that a SME could preserve its existing identity
management infrastructure but should enhance its trusted
IdP to be SAML-aware, i.e. the IdP should issue SAML
authentication assertions derived (transformed) from any
of the standards the IdP already supports.

• In order to provide a correct semantic identification and
processing between different identity technologies we
also impose a SP to be SAML-aware (as a default setting)
for its interactions with a trusted IdP. In this way, each
SP adopts SAML identity assertions as means of proof
of identification between the SP and its trusted IdPs. For
example, a transformation of SPKI to SAML and then
of SAML to X.509 may be semantically incorrect due
to the different design goals behind the X.509 and SPKI
standards.

30

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

With the new SAML release, the standard allows to ex-
press identity assertions within a context of many types of
authentication, such as X.509, SPKI, Kerberos tickets, user
name/password, etc. Thus, SAML becomes a suitable message
format standard for unifying identification information of dif-
ferent identity standards. SAML authentication assertions are
used when accessing or negotiating with different ecosystem
domains.
For example an IdP that supports X.509 and user name

& password authentication to be functional/compatible in our
framework it has to also support the following authentication
to SAML-based conversion:

• X.509 token-based authentication to SAML identity as-
sertion

• User name & password authentication to SAML identity
assertion.

• SAML-based authentication to SAML identity assertion.
Example 1: Let us suppose that a SP1 only accepts X.509-

based authentication to identify entities and that SP1 trusts
IdP1 to validate and authenticate users based on X.509 tokens.
Now, let IdP2 identifies users based on SPKI tokens, and let
a user has a SPKI certificate issued by the IdP2. If IdP1 and
IdP2 have bilateral contractual relationship of sharing users’
identities for the sake of common service usage, following
our model assumptions, the following conversions are to be
provided:

IdP1: X.509 token-based authentication to SAML identity
assertion.

IdP1: SAML-based authentication to SAML identity asser-
tion.

SP1: SAML-aware for a proof of authentication from
IdP1.

IdP2: SPKI token-based authentication to SAML identity
assertion.

IdP2: SAML-based authentication to SAML identity asser-
tion.

With the above assumptions the user is able to automatically
identify itself to SP1. To do so, the user has to contact its IdP2

and request for a SPKI-based authentication to SAML identity
assertion transformation. Based on the model assumption,
IdP2 provides a remote authentication (e.g., SPKI-based with
challenge/response) in order to properly authenticate the user.
Based on the authentication information and user identity
in the SPKI certificate, the IdP2 digitally signs a SAML
authentication statement with the result of the authentication,
and returns it back to the user. The user forwards the newly
obtained token to IdP1.
Since IdP1 has a contractual trust relationship with IdP2,

IdP1 accepts the SAML assertion, by verifying its signature,
and issues a new SAML assertions to SP1 for proof of
entity identification. SP1 is SAML-aware and trusts IdP1 for
identifying entities and provides access to the desired service.

III. IDENTITY MANAGEMENT MODEL ARCHITECTURE
Figure 2 shows the basic model architecture and workflow

of messages between the main actors. The message flow of

Fig. 2. Model architecture and communication scheme

the model is the following:
1: A user requests its profile from a trusted peer storing it by
authenticating himself with the user name/password from
the registration process. Information of ecosystem trusted
peers is obtained (possibly publicly available) when users
join the ecosystem.

2: On successful authentication, the trusted peer retrieves
and sends the encrypted user profile.

3: The user decrypts the profile (with the master password)
and starts using ecosystem services. It makes a request
to a SP to access a service.

4–5: The SP redirects the user to a trusted IdP1 (SSO use
case).

6: The user has no credentials issued by the IdP1. The IdP1

sends a list of its trusted IdPs and the accepted token types
to the user.

7: The user queries the profile if it has available tokens.
The profile is processed to match if there are tokens
(information) issued by any of the IdPs from step 6. If
no credential is matched then the user (possibly) has to
register to IdP1 to obtain an identity token. If an identity
token is found then the user extracts it either from the
profile, or requests it from the remote IdP that issued it. If
a match of IdP and token type then the user just presents
the certificate as it is. In case of more than one possible
matches the user is prompt to choose which token to use.
We note that the user can perform steps 8 and 9 even if it
has the right credential match of IdP and token type but
does not have the token locally in the profile. In such a
case, the user obtains it via a remote authentication (e.g.,
LDAP server storage).

8: If a credential match, e.g., of IdP2 but with different
token type then the user requests IdP2 for authentication
and transformation to a SAML identity assertion. On
successful authentication, IdP2 issues a SAML assertions
and returns it to the user.

9: The user forwards the certificate/SAML assertion to
IdP1.

31

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

10: IdP1 verifies and validates the certificate and issues a
SAML assertion to be forwarded to the SP .

11: The user is redirected to the SP which accepts tokens
from IdP1.

12: The SP verifies the new certificate and provides the
requested resource to the user.

We note that in step 10, IdP1 certifies the authentication
outcome in step 9 with an identity token acceptable by the
SP. The only case in which IdP1 does not issue a new token
is when the user (already been in contact with the SP) presents
a same identity token issued by the IdP1 last time. In this case,
after certificate verification and validation, IdP1 forwards the
token to the SP .
The SAML standard is to be used when user authentication

format with an IdP is different than the one agreed between
the SP and the IdP. For example, in case of X.509 user
authentication to IdP1 and a same X.509 format agreed
between the SP and IdP1 then, IdP1 may not issue a SAML
authentication statement to SP but use the X.509 format.
Step 11 is a point where the user profile records and

stores the new identity token and associated information for a
subsequent use.

A. Model extension to service composition
Digital Ecosystems allow companies to cooperate with each

other, form coalitions, and thus use service compositions
suitable for their business models. An important requirement
for an identity management model is to support composition
of services. We extend the basic model presented above to
cope with the case in which one service relies on services from
other providers. We assume that the service composition model
occurs between SPs having contractual trust relationships.
In a service composition scenario, the service provider

aggregating services from other service providers needs to
run the services on the name of the user and, as so, he has
to authenticate the user to the other providers. To solve this
problem we adopted the use of Proxy Certificate that the client
issues to the provider of the composite service.
A Proxy Certificate [18] is derived from and signed by a

normal X.509 public key end-entity certificate or by another
Proxy Certificate (PC). The identity of the new PC is derived
from the identity that signed it. A PC has its own public and
private key pair. A PC is identified as such by its extensions.
Any X.509 certificate has extension fields to encode different
certificate characteristics. A PC has a policy that specifies
what conditions must be respected when an entity is using
it. Another important issue is that a PC can only sign another
PC.
SAML standard v2.0 defines a rich set of subject classifica-

tion, as part of the SAML identity assertion, that allow entities
to be bound to a public-key information. In this case, the real
use of proxy certificate in our model is in the SAML context
definition. Thus, the message encoding of identity information
in a proxy certificate becomes as a SAML assertion and
is compatible (message-level interoperable) with the SPs of
composite services.

There are two important requirements specified in the policy
of a proxy certificate that reflect our identity model.

• Service scope. The first requirement is the scope of a
PC. We identity the scope of a PC to be the scope of
the service being requested by a client. Scope of service
means any aggregated service that is directly used for
the sake of proper execution of the main service. In
other words, any service that is not directly aggregated
within the main service (e.g. aggregation of aggregation,
or third-party services not part of current aggregation)
should fall beyond the PC scope, i.e., not considered as
a valid identity certificate on behalf of a client.

• Level of service aggregation. To solve the issue of com-
plex aggregation of services that aggregate other services,
we propose as a second requirement the level of service
aggregation. The purpose of the level of aggregation is to
restrict the use of a PC in a chain of service aggregations.
Often a client may wish to restrict not only the scope but
also the re-generation of next level PCs. For example,
to restrict the use of a service of selling books, a user
may use level of aggregation 1 indicating that the at
most one level of aggregation is allowed, expecting only
a product shipping service to be used and not further
delegation of PC usage. The level of aggregation should
be interpreted as not to derive more PCs longer in chain
than the specified level.

Another requirement is a validity period of a PC. Usually,
this depends on the particularity of the main service being
executed (i.e., the validity of the service transaction). The
client obtains such information from the SP hosting the main
service. This parameter plays an important part of PC usage. A
client may restrict the use of a PC according to his expectations
or familiarity with a given SP. If a distrusted SP a client may
wish to generate a PC with short validity period to reduce
potential misuse of it.
When a SP contacts another SP to execute an aggregated

service, the second SP specifies that it needs a PC to execute
other services within its aggregated service. To do so, the first
SP issues and signs a new PC to the second SP with the
following restrictions:

• The derived PC has as service scope the aggregated
service to be executed,

• The derived PC has a level of aggregation the level of
the predecessor PC decreased with 1 (if not zero),

• The derived PC has a validity period, the remaining
validity period of the predecessor PC that signs it (if not
expired).

In this way, a next level SP can use the newly derived PC only
for the sake of execution of its service. To validate a PC an IdP
needs the set of all PCs derived from the client’s generated
one, and validates if they follow a correct PC derivation as
described above.
Figure 3 shows the extended identity model for service

compositions. The steps behind the model are the following:
1: The user downloads the profile from a trusted peer.

32

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

Fig. 3. Service composition using proxy certificates

2: The user requests to access a composite service of SP1.
3: The user is redirected to IdP1 to login (SSO use case).
On successful authentication following the message flow
of the main model, IdP1 issues a new (SAML) identity
token forwarding it back to SP1. SP1 indicates to the user
that the requested service is an aggregation of services
together with a list of the services to be used. The list
of aggregated services is an optional (but recommended)
element and it serves to precisely define in a PC the
service scope. The default value of the service scope
is the current service the user requests with a level of
aggregation 1. The user issues a PC to SP1.

4: SP1 requests a service to SP2.
5: SP2 redirects SP1 to IdP2 for user authentication. SP1

authenticates to IdP2 on behalf of the user using the
proxy certificate obtained in step 3. We note that a new
PC has its own private/public key pair used for an authen-
tication process. For successful authentication, SP1 sends
to IdP2: (i) the PC issued from the user, (ii) the identity
token received from IdP1 for user authentication, and (iii)
the user original certificate that signed the PC. The last
certificate is essentially the one the user has authenticated
with to IdP1.
We made the assumption that service aggregation occurs
between contractual trust relationships, in this case, IdP2

has a trust relationship with IdP1 and can validate that
the original certificate which signed the PC has been
used for authentication by IdP1, by analyzing the identity
token issued from IdP1, and that the PC remains valid
according to its specified policy. If successful verification,
IdP2 issues an identity token to SP2 (binding the original
user identity) authorizing SP1 as running on behalf of an
authenticated user.

6; SP2 runs the service and provides the result to SP1.
7: SP1 completes the service execution and provides the
result to the user.

In case of more than one SPs on a next level aggregation,

e.g., SP2, SP3, ..., SPn, the aggregator SP issues a new PC for
any of the SPs on the next level, by repeating the extended
model n-times. The extended model scheme can be recursively
applied in case SP2 needs to contact SP3 as next level
aggregated service provider. In such a case, SP2 takes the
role of SP1 in the extended model.

B. Model integration in DE
Ecosystem oriented architectures [5] provide specific mech-

anisms for peer-to-peer decentralized communications. There
is an abstraction communication layer that, close to Grid
communications, defines seamless and platform independent
service provisioning and execution. In this way ecosystems’
services interact with each other transparently of the commu-
nication layer and regardless whether service provisioning and
execution takes place on a remote or local platform.
Each SP, providing services via the DE’s infrastructure,

defines a trusted IdP (or a list of them), as a dedicated DE’s
service so that DE users will be forwarded to it. On the
other side, each DE user will benefit of the DKB part of
the DE’s infrastructure for a distributed storage and retrieval
of its profile. The DKB accessibility service requires a user
to be a registered DE user, which will bootstrap the identity
management model with a token availability from the initial
registration. This is especially useful for those IdPs that accept
DE’s registration tokens for possible user authentication.
An SSO is the main interaction mechanism for a user

authentication. An IdP has two main services relevant to the
proposed model: an authentication service and a transforma-
tion service. Since the services an IdP provides are DE’s
dedicated services, the SSO mechanism (between an SP and
an IdP) is to be based on top of the DEs communication
layer. Thus, a user will use the DE’s standard mechanism for
service accessibility in both when requesting a secure token
transformation and when authenticating to an IdP.
A comprehensive identity management solution for DEs is

tightly bound to the definition of suitable trust and reputation
mechanisms that benefit (are based upon) the identity model.
The work in [9] defines a peer-to-peer reputation framework
for quantifying trust on different levels of DEs stepping on
the identity model in [12]. The work in [10] complements [9]
by presenting an agency-based reputation model as a more
reliable trust quantification schema. The agency reputation
model defines an interoperation schema between agencies to
provide a scalable reputation solution to DEs. Our aim with
the above approaches is to define a targeted trust and identity
management framework for DEs that scales to the needs of
SMEs.

IV. USER-CENTRIC IDENTITY PROFILE
In this section we will describe the structure and syntax of

a user profile.
User profile structure. The user profile is built using RDF

(Resource Description Framework) meta-model and XML
syntax [20]. RDF provides a language for representing infor-
mation and information modeling. RDF works on the basis

33

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

of making statements about resources. These statements about
resources are given in the format of subject-predicate-object
[19]. The subject refers to the resource, predicate refers to a
property or aspect of the subject, and object assigns a value
to this predicate.
RDF identifies entities using Web identifiers (called Uni-

form Resource Identifiers, or URIs), and describes resources
in terms of simple properties and property values. This allows
RDF to describe statements about resources as a graph of
nodes and arcs representing the resources, and their properties
and values.
The user profile has a generic structure of:
• A standard v-Card format, and
• A listing of relevant identity token information available
to a user.

The user profile lists all available security tokens together
with relevant token information. The user profile provides
a unified view of the user’s identity information. Users get
certificates from interactions with different DE domains. The
user profile will be referenced across the DKB as an I-name
XRI reference [2]. The following example of an RDF graph
depicts the structure of the user profile:

Fig. 4. User profile example

The JENA framework4 provides a programmatic environ-
ment for reading, writing, querying and updating RDF docu-
ments in several formats such as RDF/XML and Turtle. We
will overview the functional description of the core classes
used in the profile structure.

• UserData A class encapsulating basic user information
provided during a registration process. It corresponds to
the vCard information in the profile.

• Profile A class encapsulating the identity profile that
contains information about all credentials a user has.

• IdentityToken A class encapsulating/corresponding
to one credential entry in a user profile.
– TokenType – X.509, SPKI, SAML assertion, user
name & password, etc.

– Subject – subject name of the user in a given
token, i.e. how the user is known to a given IdP.

– Issuer – issuer distinguished name as defined in
an identity token.

• Location A class encapsulating a location of a certifi-
cate. Token availability in a profile and how to access it.

4http://jena.sourceforge.net

If the token type is user name & password, then the token
will be contained in the profile. If a different token type,
the token will be either stored in an PKCS#12 attached
to the RDF profile or will be stored on an external LDAP
(Lightweight Directory Access Protocol) server.

• Validity A class containing a validity period of an
identity token, in a format notBefore and notAfter
dates.

• AccessInfo A class encapsulating the information on
how to access/retrieve a certificate. Information about the
location of the server (URI), the location of the certificate
(distinguished name: DN) and possibly user name and
password information for accessing the token will be
available in the profile.

Based on the core classes the following methods/interfaces
are provided for a user profile management.

• createProfile(UserData) Creates a user profile
based on the information in class UserData. It creates
a registration data such as name, address, email, etc. It
creates also the vCard as described in the RDF schema.

• addIdentityToken(IdentityToken) Adds an
identity token information to a current user profile.

• deleteIdentityToken(IdentityToken)
Deletes a credential information from a current profile.
This usually happens because a certificate has expired
or an Identity Provider leaves a network or is no longer
trusted.

• matchIdentityTokens(List of Trusted IdPs)
Returns a list of matched IdentityToken elements. It
queries a current user profile for all credentials matching
an IdP and a TokenType from the input list. Later in
the section we will describe what data structure an IdP
returns to a client for a list of trusted IdPs used for the
query process.

Identity credential token schema. While the vCard structure
is obviously a syntax supported by a standard schema [21],
the identity token syntax needs to be defined within the RDF
structure. The RDF graph for an identity credential token is
depicted in Figure 5.
We will use Turtle [3] for expressing the structure of the

RDF schema. Turtle allows RDF graphs to be written in a
compact and natural text format. The listing below shows the
identity token schema:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@base <http://www.one-node.org/2008/04/profile> .

:IdentityToken a rfds:Class .
:Validity a rfds:Class .
:Location a rfds:Class .
:AccessInfo a rfds:Class .

:securityTokenType a rdf:Property ;
rdfs:domain :IdentityToken ;
rdfs:range [
a rdf:Alt;
rdf:_1 rdfs:datatype("X509", xsd:string) ;
rdf:_2 rdfs:datatype("SAML", xsd:string) ;
rdf:_3 rdfs:datatype("SPKI", xsd:string) ;
rdf:_4 rdfs:datatype("UsrnPswd", xsd:string) .] .

34

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

Fig. 5. User profile identity token schema: an RDF graph

:isValid a rdf:Property ;
rdfs:domain :IdentityToken ;
rdfs:range :Validity .

:notBefore a rdf:Property ;
rdfs:domain :Validity ;
rdfs:range xsd:dateTime .

:notAfter a rdf:Property ;
rdfs:domain :Validity ;
rdfs:range xsd:dateTime .

:issuer a rdf:Property ;
rdfs:domain :IdentityToken ;
rdfs:range xds:string .

:subject a rdf:Property ;
rdfs:domain :IdentityToken ;
rdfs:range xds:string .

:hasLocation a rdf:Property ;
rdfs:domain :IdentityToken ;
rdfs:range :Location .

:storageType a rdf:Property ;
rdfs:domain :Location;
rdfs:range [
a rdf:Alt;
rdf:_1 rdfs:datatype("PKCS#12file", xsd:string) ;
rdf:_2 rdfs:datatype("LDAP", xsd:string) ;
rdf:_3 rdfs:datatype("inProfile", xsd:string) .] .

:accessInfo a rdf:Property ;
rdfs:domain :Location ;
rdfs:range :AccessInfo .

:LDAP_URI a rdf:Property ;
rdfs:domain :Location ;
rdfs:range :AccessInfo .

:ND a rdf:Property ;
rdfs:domain :AccessInfo ;
rdfs:range xds:string .

:accessUsrn a rdf:Property ;
rdfs:domain :AccessInfo ;
rdfs:range xds:string .

:accessPswd a rdf:Property ;
rdfs:domain :AccessInfo ;
rdfs:range xds:string .

V. IDENTITY TOKEN TRANSFORMATION FOR
INTEROPERABILITY

The main SAML objective is the ability of expressing
assertions about a subject in a portable fashion so that other
applications across domain boundaries can trust it.
Authentication statements assert to the service provider that

the principal did indeed authenticate with the identity provider
at a particular time using a particular method of authentication.
Other information about the authenticated principal, called the

authentication context, can be inserted in an authentication
statement.
SAML authentication statement. A SAML authentication

statement defines the following triple: 〈Issuer, Subject, Va-
lidity Period〉. Interactions between a user and an IdP for a
SAML identity assertion transformation occur within a SAML
context, i.e. using the SAML authentication request/response
protocol.
The authentication process will be based either on an

identity token issued by the IdP or a user name and password
authentication. For example, if a user has a SPKI token issued
by an IdP and the user needs to have a corresponding SAML
identity assertion, the user will initiate a SAML authentication
request to the IdP. The authentication process will be based
on the SPKI token the user has from the IdP (via chal-
lenge/response for authenticity). On successful authentication,
the IdP will issue a SAML authentication statement with a
userID taken from the SPKI token. We note that an optional
input to the transformation interface can be provided allowing
a user to specify the need of a pseudonym to be used in the
new SAML authentication token.
SAML authentication context. A relying party (a SP’s trusted

IdP) may require information additional to the assertion itself
in order to assess its level of confidence in that assertion.
SAML does not prescribe a single technology for authentica-
tion and it may vary from an IdP’s to IdP’s policy. For that
case a SAML authentication context is provided to specify ad-
ditional information, to the authentication process generating a
current SAML token, such as what authentication mechanism
or method (e.g., password or certificate-based SSL) was used.
Thus, in our example, the IdP issuing the SAML au-

thentication token will additionally specify an authentication
context as SPKI-based SSL authentication. Based on that
information, the relying IdP can infer what authentication took
place and generate the SSO token response (to the SP) with
longer/shorter session validity period, or even refuse to accept
the SAML token.

35

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

<List_of_TIdP> ::= <IdP_def> | <IdP_def> <List_of_TIdP> .
<IdP_def> ::= <IdP_id> <IdP_accepted_tokens> .
<IdP_id> ::= [<Public_key_certificate>] <Distinguished_name> [<List_of_TIdP_URL>] .

<Distinguished_name> ::= <IdP_name_type> <IdP_name_value> .
<IdP_name_type> ::= "X500" | "I-Name" | "String" .
<IdP_name_value> ::= <string_value> .

<List_of_TIdP_URL> ::= <string_value> .
<IdP_accepted_tokens> ::= <Token_type> | <Token_type> <IdP_accepted_tokens> .

<Token_type> ::= "X509" | "SPKI" | "SAML" | "UsrnPswrd" .
<Public_key_certificate> ::= <Token_type> <Token_encoding> <Token_value> .

<Token_encoding> ::= "Base64" | "Binary" .

Fig. 6. List of trusted IdPs structure: BNF notation

Some of the possible context authentication schemes rel-
evant for our scope are: SPKI, X.509, Kerberos, PGP, SSL
certificate, password, previous session.

A. Token transformation services
We have two main token transformation functionalities.

They represent a remote invocation from a user to a trusted
IdP server. Essentially, the two functionalities provide a
user authentication process via either an identity token
(e.g., SSL-based, challenge/response-based) or via a user
name&password login.
Token-based authentication to SAML transformation. An

interface that transforms from available token formats to a
SAML identity token. A user is authenticated based on its
available certificate token. On successful authentication the
interface transforms the user authentication information to a
digitally signed SAML authentication assertion. The interface
(optionally) should allow a user to specify an alternative
user identity (user-chosen pseudonym) to be bound to the
new SAML identity token. This would allow a user to have
privacy (to some extend anonymity) in a given domain. If a
pseudonym is used in a SAML token the user should not re-
authenticate with that token and request for a new pseudonym,
i.e. derivation of a pseudonym from a pseudonym should not
be allowed.
User name-based authentication to SAML transformation.

An interface that transforms a user name to a SAML asser-
tion. If a user name&password match those of IdP’s internal
database then a SAML assertion is generated with the user
name as a user identity in the SAML token. An optional
pseudonymity input should allow a user-chosen identity name
to be used instead of his original user name in the new SAML
assertion. Note that this should not change the original user
name of the user but only bound the new user name in the
SAML token.

B. Defining a List of Trusted IdPs
Figure 6 shows the core structure used for representing a

list of trusted IdPs. A list of trusted IdPs is a set of tuples each
identifying an IdP authority. An IdP authority is identified by
(optionally) its public-key certificate and by its distinguished
name. For each IdP authority identifier we assign a list of
accepted security token types from that authority. Note that

Figure 6 describes the data structure and not the representation
of a list of trusted IdPs.
A suitable representation of the shown structure is in an

XML-based format. We assume that there is a commonly
shared dictionary between entities for unambiguous processing
of the above (labeled) information. If using Web Services
technology, a suitable ground for setting up a list of trusted
IdPs is the use of WS-Policy framework5. WS-Policy provides
a set of basic constructs for defining requirements (basic
assertions) about service accessibility.
Example 2: (List of Trusted IdPs):

<List_of_TIdP>
<IdP_def>

<IdP_id>
<Public_key_certificate>

<Token_type> X509 </Token_type>
<Token_encoding> Base64 </Token_encoding>
<Token_value>
-----BEGIN CERTIFICATE-----
MIIB+jCCAWOgAwIBAgICAfQwDQYJKoZIhvcNAQ...
EENhbGlmb3JuaWEgU3RhdGUxHDAaBgNVBAMT...
MTQ0NjQxWhcNMDkwOTAxMTQ0NjQxWjA/MQs...
cmtlcnMgT3JnLjESMBAGA1UEAxMJSm9obiBDb3V...
-----END CERTIFICATE-----
</Token_value>

</Public_key_certificate>
<Distinguished_name>

<IdP_name_type>X500<IdP_name_type>
<IdP_name_value>
CN=ABC CA Class-1,O=ABC Inc.,C=US

</IdP_name_value>
</Distinguished_name>

</IdP_id>
<IdP_accepted_tokens>

<Token_type> X509 </Token_type>
<Token_type> SAML </Token_type>

</IdP_accepted_tokens>
</IdP_Def>

</List_of_TIdP>

The example shows an XML representation of a list of
trusted IdPs with only one certification authority. The IdP is
identified with an X.500 distinguished name, and the accepted
security tokens are X.509 and SAML.

C. User profile evolution: Dynamic token discovery
The main feature of a user-centric identity profile is the

possibility of dynamic evolution over time. On each interaction
with a SP the user profile will update user identity token

5http://www.w3.org/Submission/WS-Policy

36

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

Fig. 7. User profile evolution scenario

information with a new token information obtained from the
interactions with the IdP, trusted by the SP. Figure 7 shows
the main envisaged scenario.
Figure 7(a) illustrates a basic scenario of a direct trust

relationship between a SP’s IdPB and an IdPA that has issued
a token to a user. We represent the two IdPs as belonging
to different administrative domains A and B, respectively.
The SSO between the user and IdPB of domain B will
authenticate the user by using the existing token information,
as already shown in the model. Let assume that the existing
token information is of SPKI format and IdPB accepts only
SAML tokens (the default format in the model). After an
authentication and a transformation process with IdPA via the
existing token, the user obtains a SAML authentication token
that it forwards to IdPB . Next, on successful authentication,
the IdPB generates an SSO response token (in a SAML format
as a default format) forwarding it to the SP (step 4). At this
point of the SSO, the user agent updates the user profile with
the new SAML token as signed by IdPB . This will allow a
user profile to dynamically evolve as the user interacts with
SPs of different DE’s domains.
Figure 7(b) illustrates the case of dynamic token discovery

when the same user interacts with a SP of domain C. The
SP’s trusted IdPC has a trust relationship with the IdPB of
domain B, but has no (direct) trust with the IdP of domain A.
Now, since the user has updated its profile with the identity
token of the last SSO interaction, the same can discover that it
has an identity token signed by IdPB of domain B. Since the
token is in a SAML format the user can directly provide it for
an authentication with IdPC . After a successful authentication
the IdP of domain C issues a new SAML token to the SP in
response to the SSO authentication process. Again, the new
token information is stored in the user profile for a subsequent
usage.
In case the SAML token from the scenario in Figure 7(a)

is expired at a time of a next user interaction, the user

profile, storing the IdPB location of service authentication and
(optionally) what token was used for authentication, the user
can, first, request a token transformation (step 3’) to IdPB (by
obtaining the list of trusted IdPs and) presenting the identity
token issued by IdPA. Second, on successful authentication,
the user presents the new identity token to IdPC of domain
C (step 3).
The above scenarios can be generalized to an N-step au-

thentication process where a user starts with the list of trusted
IdPs of a given IdP and continues with the respective lists of
trusted IdPs for any IdP in the main list, thus forming a graph
(Web) of trusted IdPs (we included an optional link to IdP’s
respective list of trusted IdPs for each IdP definition, refer to
Figure 6). In this case, an algorithm for finding a matching
token is a breadth first search algorithm with no loops.

VI. IDENTITY MANAGEMENT STANDARDS

In a distributed environment, users access in one session
services located on different administrative domains and need
to be authenticated by each of them. If users would have
to sign in each time a different domain is accessed and to
remember and manage all the different security credentials,
the system will not be scalable and become almost impossible
to use with a big number of players. In order to allow
users to sign in just once and then access services on other
domains (single sign-on), organizations establish trust relations
between them (on a contractual basis) and allow access to their
resources to users which have been authenticated by one of
their trusted partners. This is know as identity federation and
many specifications and implementations are dedicated to it.
Identity federation means sharing of identity information

between domains which have a trust relationship or agreement.
Once a federation is established, users can experience single
sign-on (SSO) inside the circle of trust. SAML and Liberty
Alliance define standards for federating identities and single
sign-on (SSO).

37

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

SAML [16], developed by OASIS, is an XML-based frame-
work for communicating user authentication, authorization
and attribute information. SAML provides XML formats and
protocols for encoding and exchanging identity information.
SAML assertions allow principals to make statements about a
subject’s authentication, attribute, or authorization details. A
subject is uniquely referred to by using an Identifier which can
be a real name or a pseudonym. SAML focuses on authentica-
tion and attribute statements while authorization statements are
the focus of XACML [27]. SAML assertions provide a good
way of exchanging authentication information between parties
using different and incompatible authentication technologies.
Because of this, we are going to use SAML in our model to
achieve interoperability between different standards.
SAML also provides standards for federation creation and

SSO. However, though SAML v2.0 is very flexible and offers
many choices, in practice it is yet hard to establish identity
federations with it [6]. Some of the reported reasons are listed
below:
1) Long deployment times. For example, deploying SAML-
based projects can take weeks or even months with
a single partner. One reason for that is the lack of
standardized mechanisms for meta-data exchange and
trust establishment.

2) Administrators need to familiarize themselves with the
details of SAML v2.0 and have a deep understanding of
the way federations are secured.

3) SAML 2 has many choices (for profiles and bindings,
attributes and identifiers etc.) but lacks guidance on what
is the most appropriate to choose.

4) The implementations available today require adminis-
trators to provide answers to fundamental questions
that require deep insight into the SAML 2 standard:
how to manage trust between providers and metadata
describing them,which SAML profiles and bindings to
use, which messages and what part of each message
should be signed, which identifiers and attributes should
be exchanged and how, etc.

5) Administrators need to establish point-to-point federa-
tion connections with each new partners. This connec-
tions take time and affect the scalability of the system
when moving from just a few partners to hundreds or
thousands.

6) In order to allow small organizations with fewer re-
sources and technically unsophisticated administrators
to deploy these standards, the implementation should be
easy to deploy and to configure.

To overcome the above shortcomings, Ping Identity6 and
their partners have been working on developing dynamic
SAML [6] which should minimize the steps administrators
must perform to configure SAML connections securely.
Liberty Alliance provides open SAML based standards for

federated network identity. The most relevant technology spec-
ifications developed by the Alliance are Identity Federation

6Ping Identity Corporation http://www.pingidentity.com

Framework (ID-FF) [7] and Web Services Framework (ID-
WSF) [8]. As of the new SAML version (v2.0) the OASIS
technical committee has unified the Liberty standards within
one SAML identity framework with a rich set of identity
profiles.
Liberty ID-FF defines identity federation as the linking of

distinct user’s accounts at the Service Provider and Identity
Provider sites. The account linking (or identity federation) is
done with the user’s consent and must be audited. Liberty
ID-FF defines the following required steps for setting up a
federation:
1) First of all, businesses form circles of trust based on
Liberty architecture and operational agreements that
define trust relationships between them.

2) Users federate the isolated local accounts they have
with the businesses from the circle of trust. When this
happens, the local identifiers (e.g. usernames) of the user
are not exchanged between the sites, but instead they
exchange opaque user handles.

After this, the users can experience SSO and login at the
IdP site and then gain access to the SP sites federated with the
IdP. The user needs to allow introductions such that sites of the
federation can discover when the user recently accessed a site
in the circle of trust and ask the user to federate the accounts.
The user can also find a link to trusted SPs from a web
site of the IdP. Liberty Alliance specifications are difficult to
understand and use for mainly the same reasons we mentioned
in the above subsection for SAML. Although business could
benefit form deploying Liberty Alliance identity federation
solution, the standard is too heavy and organizations face
implementation hurdles.
Moreover, it is not always easy for users to discover which

accounts they can federate or for SPs to discover which IdP
a user is using. This is the case in bigger circles of trust with
several IdPs. Liberty ID-FF specifies an optional introduction
profile based on cookies which could potentially solve this
problem. The idea is to set up a common domain for the circles
of trust and to use a common domain cookie accessible by all
parties (user, SPs, IdPs). This solution has many shortcomings
because it relies on cookies and because common domains
need to be updated when trust relations change.
WS-Trust [25] and WS-Federation [23] define standards

for federating identities by allowing and brokering trust of
identities, attributes and authentication between participating
Web services. WS-Trust defines a service model called the
Security Token Service (STS), and a protocol for requesting
and issuing security tokens. The kind of tokens that a Web
Service accepts are described using WS-SecurityPolicy. WS-
Federation defines federation as a collection of domains that
have established relationships for securely sharing resources.
WS-Federation builds on the STS service of WS-Trust and
provides mechanisms that simplify interactions between users,
IdP (or STS) and SPs. WS-Federation allows to determine
policies for obtaining services and cross organizational identity
mapping.

38

International Journal On Advances in Security, vol 1 no 1, year 2008, http://www.iariajournals.org/security/

OpenID7 is a decentralized framework for digital identity.
The underlying idea is that users can identify themselves on
the web like Web sites do with URIs. OpenID allows a user
name/password login. The user name is the personal URI and
the password is safely stored on the OpenID Provider. To
login to an OpenID-enabled Web site, the user is required the
OpenID URI and then gets redirected to the OpenID Provider
to authenticate. After authentication, the OpenID Provider
sends back the user to the web site with the required identity
information to login.
CardSpace8 [1] is an identity selector for Microsoft Win-

dows. It allows users to have different identities, each repre-
sented by a card. When a users needs to authenticate to a web
site or a web service, CardSpace pops up a set of suitable
information cards for the user to choose from. Each card
has some identity data associated with it, though not stored
actually in the card. The cards can be issued either by an
Identity Provider or by the user himself (self-signed).
The CardSpace model is close to our user profile function-

ality with the difference of having static updates and with
no additional information for a token transformation service.
However, CardSpace is a suitable underlying technology for a
user-centric profile management.

VII. CONCLUSION

We have presented an identity management model targeting
identity interoperability for DEs. The model bridges main
identity standards by using SAML as a unified message-level
protocol for querying and obtaining authentication assertions.
By using SAML one can automate the process of identifying
entities in a distributed environment. We adopted the use
of a user-centric profile to keep an abstract view of user’s
available identity information such as identity certificates, user
name/passwords, public/private keys, etc. The user profile is
replicated and encrypted on trusted peers.
We presented the core interoperability model, its architec-

ture and message flow. Then, we presented the extension
of the model to service compositions. To scale to service
composition, we adopted the use of proxy certificates with two
main policy settings: limiting a service scope and a level of
aggregation. The extended model provides the end-user with
the ability to control the use of its identity information in case
of service aggregations.

ACKNOWLEDGEMENTS

Hristo Koshutanski was supported by the Marie Curie EIF
iAccess (#038978) fellowship of the 6th Framework Program
of the European Commission. Mihaela Ion and Luigi Telesca
were supported by the project EU-INFSO-IST ONE (#034744)
of the 6th Framework Program of the European Commission.

7http://openid.net
8http://www.microsoft.com/net/cardspace.aspx

REFERENCES
[1] CardSpace documentation and resources.

http://msdn2.microsoft.com/en-us/netframework/aa663320.aspx.
[2] OASIS Extensible Resource Identifier (XRI). http://www.oasis-

open.org/committees/xri.
[3] Rdf primer - turtle version. http://www.w3.org/2007/02/turtle/primer/.
[4] P. Ferronato. Architecture for digital ecosystems, beyond service

oriented architecture. In Proceedings of the 1st IEEE Conference on
Digital EcoSystems and Technologies (DEST’07), 2007.

[5] P. Ferronato. Digital Business Ecosystems, chapter Ecosystem ori-
ented architecture (EOA) vs SOA. European Commission, 2007.
http://www.digital-ecosystems.org/book/de-book2007.html.

[6] Patrick Harding, Leif Johansson, and Nate Klingenstein. Dynamic
security assertion markup language. simplifying single sign-on. Security
& Privacy, IEEE, 6(2):83–85, March-April 2008.

[7] ID-FF. Liberty Identity Federation Framework (ID-FF), 2007.
http://www.projectliberty.org/resources/specifications.php.

[8] ID-WSF. Liberty Identity Web Services Framework (ID-WSF), 2007.
http://www.projectliberty.org/resources/specifications.php.

[9] M. Ion, A. Danzi, H. Koshutanski, and L. Telesca. A peer-to-peer
multidimensional trust model for digital ecosystems. In Proceedings
of IEEE International Conference on Business Ecosystems and Tech-
nologies (IEEE-DEST’08). IEEE press, February 2008.

[10] M. Ion, H. Koshutanski, V. Hoyer, and L. Telesca. Rating agencies
interoperation for peer-to-peer online transactions. In In proceedings of
the 2nd International Conference on Emerging Security Information,
Systems and Technologies (SECURWARE’08), pages 173–178. IEEE
Computer Society, 2008.

[11] Kerberos. The kerberos network authentication service (v5), 2005. IETF
RFC 4120.

[12] H. Koshutanski, M. Ion, and L. Telesca. A distributed identity man-
agement model for digital ecosystems. In Proceedings of the 1st
International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE’07), Valencia, Spain, October 2007.
IEEE press.

[13] T. Loukopoulos and I. Ahmad. Static and adaptive distributed data
replication using genetic algorithms. Journal of Parallel and Distributed
Computing, 64(11):1270–1285, 2004.

[14] F. Nachira, P. Dini, A. Nicolai, M. Le Louarn, and L. Rivera Leon,
editors. Digital Business Ecosystems. European Commission, 2007.
http://www.digital-ecosystems.org/book/de-book2007.html.

[15] Francesco Nachira, Paolo Dini, and Andrea Nicolai. Digital Business
Ecosystems, chapter A Network of Digital Business Ecosystems for
Europe: Roots, Processes and Perspectives. European Commission,
2007. http://www.digital-ecosystems.org/book/de-book2007.html.

[16] SAML. Security Assertion Markup Language (SAML), 2005.
http://www.oasis-open.org/committees/security.

[17] SPKI. SPKI certificate theory, 1999. IETF RFC 2693.
[18] S. Tuecke, V. Welch, D. Engert, L. Perlman, and M. Thompson.

RFC3820: Internet X.509 Public Key Infrastructure (PKI) Proxy Cer-
tificate Profile, 2004. http://www.ietf.org/rfc/rfc3820.txt.

[19] W3C. RDF Primer, W3C Recommendation, 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[20] W3C. RDF/XML Syntax Specification, W3C Recommendation, 2004.
http://www.w3.org/TR/rdf-syntax-grammar/.

[21] W3C. Representing vCard Objects in RDF/XML, 2004.
http://www.w3.org/TR/vcard-rdf.

[22] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication
algorithm. ACM Transactions on Database Systems, 22(2):255–314,
1997.

[23] WS-Federation. Web Services Federation Language (WS-Federation),
2006. http://www-106.ibm.com/developerworks/webservices/library/ws-
fed.

[24] WS-Policy. Web Services Policy Framework (WS-Policy), 2004.
http://www-106.ibm.com/developerworks/library/specification/ws-
polfram.

[25] WS-Trust. Web Services Trust Language (WS-Trust), 2005. http://www-
106.ibm.com/developerworks/library/specification/ws-trust.

[26] X.509. The directory: Public-key and attribute certificate frameworks,
2005. ITU-T Recommendation X.509:2005 | ISO/IEC 9594-8:2005.

[27] XACML. eXtensible Access Control Markup Language (XACML),
2005. http://www.oasis-open.org/committees/xacml.

