
Fine-grained and History-based Access Control with Trust Management for
Autonomic Grid Services ∗

Hristo Koshutanski
CREATE-NET

Via Solteri 38, Trento 38100, Italy
hristo.koshutanski@create-net.org

Fabio Martinelli, Paolo Mori, Anna Vaccarelli
Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche

Via Moruzzi 1, Pisa 56124, Italy
{fabio.martinelli,paolo.mori,anna.vaccarelli}@iit.cnr.it

Abstract

Grid technology provides an Internet-wide environment
where a very large set of entities share their resources.
The main feature of a Grid environment is that resource
providers belong to distinct administrative domains each
with its own security policies and enforcement mechanisms.
Even more, service providers and entities, exploiting the
Grid infrastructure, typically have incomplete information
about each other mainly because each administrative do-
main manages its policies and resources with high degree
of autonomy.

Thus, controlling access to Grid resources has become a
major security issue and a Grid infrastructure has to pro-
vide a proper set of mechanisms and tools that allow for a
fine-grained and history-based access control management.

This paper proposes a comprehensive access control and
enforcement framework for Grid computational resources.
The framework is based on a behavioral model that de-
fines fine-grained and history-based monitoring and on a
trust management model that provides access decisions and
proper access rights management.

The framework provides dynamic and context-aware ac-
cess control enforcement by generating temporal creden-
tials at run time while user’s applications are exploiting
Grid’s resources.

1 Introduction

Having a look on the IT sector over the last decade
middleware was a trendy word used to describe integra-
tion of distributed resources. Nowadays new paradigms

∗This work is partially funded under the IST program of the EU Com-
mission by the STREP-project ”ONE” (INFSO-IST-034744), the NoE-
project ”OPAALS” (INFSO-IST-034824), the STREP-project ”S3MS”,
the FET-project ”SENSORIA” and the STREP-project ”GRIDTrust”

for lightweight integration of enterprise resources have
emerged. Among them we find Web Services technolo-
gies as a unified way of describing (WSDL), discover-
ing (UDDI) and invoking (SOAP) resources in a hetero-
geneous and platform independent manner. Moving up in
the paradigm from intra-enterprise to inter-enterprise inte-
gration of business resources we find virtual organizations
(VOs) to result.

Grid or Grid infrastructure services [4] have emerged
as a technology for providing an environment where ge-
ographically dispersed participants share their resources.
Those participants cooperate with each other according to
particular business needs and form VOs. The nature of the
participants could be various, e.g. universities, research
centers, companies or private members. Thus, Grid en-
vironment comprises resources shared by entities belong-
ing to different administrative domains where each entity
adopts different security policies and mechanisms with a
high degree of autonomy.

Partners involved in a VO typically have incomplete in-
formation about their counterparts and, as so, they have no a
priori established trust relationships. Autonomic Grids pose
new security challenges of both access control and behav-
ioral control on the computational resources.

There is a need for a security framework that properly
controls and enforces the behavior of users (applications
running on behalf of users) when using Grid resources.
Furthermore, since we are in an autonomic scenario, the
framework should provide proper access rights manage-
ment and trust relationships establishment between resource
providers and users.

1.1 Paper Contribution

In this paper we propose a comprehensive framework for
fine-grained and history-based access control for autonomic
Grid resources. The framework monitors the behavior of

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

applications running on Grid computational resources ac-
cording to local, site dependent, security policies. On each
operation performed by an application, the framework de-
termines whether the operation is allowed according to a
behavioral policy and if access decision needs to be taken
then the framework enforces proper access rights manage-
ment according to user’s credentials and local access poli-
cies.

The proposed framework integrates two main concepts:

• fine-grained and history-based monitoring and en-
forcement of Grid resources with

• access control management for proper trust relation-
ships establishment.

The structure of the paper is the following. Section 2
describes security problems in Grid environments and ap-
proaches that have been adopted to solve them. Section 3
presents the model for fine-grained and history-based be-
havioral control. Section 4 introduces the model on inter-
active access control and access rights establishment. Then,
Section 5 presents and discusses the architecture of the over-
all access control enforcement. To make the contribution of
the paper clearer, Section 6 shows an example of the se-
curity polices and Grid usage scenario. Finally, Section 7
concludes the paper and draws possible future work.

2 Security in Grid Computing

Security is a fundamental aspect in a Grid environment
mainly because such an environment instantiates interac-
tions between a large number of participants among which
no trust relationships exist. The reason for that is that those
participants belong to distinct administrative domains each
with its own security policies and mechanisms.

The security requirements of the Grid environment in-
clude authentication, delegation, authorization, privacy,
message confidentiality and integrity, trust, policy and ac-
cess control enforcement [6, 8, 15]. All these requirements
have to be addressed by the Grid security architecture in or-
der to define a secure environment. However, the current
Grid toolkits does not fully implements all the requirements
especially those covering authorization, access control and
trust management.

Globus [4] is the widely used Grid toolkit nowadays.
The Globus Security Infrastructure (GSI) provides a coarse-
grained access control model [9]. The Globus Resource
Allocation Manager authenticates a grid user by exploiting
an identity certificate issued by a trusted VO’s Certification
Authority. Then, the only controls that are performed on the
user’s actions are those defined by the access control model
on operating system level of the grid resource. Hence, from
the authorization point of view, this access control model

is not expressive enough to define a fine-grained resource
control and to support trust management.

Several attempts have been made to improve the GSI.
One of them is the Community Authorization Service
(CAS) [5, 16] that was integrated within the Globus toolkit.
CAS determines which actions each grid user is allowed to
do. This approach requires CAS-enabled grid services that
are able to understand and enforce the security policies is-
sued by a CAS server in a form of certificate.

There are a number of systems for distributed access
control proposed in the literature and we refer to [10] for
a comprehensive survey. The most cited and discussed ones
are PERMIS [3], Akenti [19] and XACML [21] specifica-
tion.

The general idea behind PERMIS and Akenti is that the
information needed for an access decision, such as identity,
authorization, and attributes is stored and conveyed in cer-
tificates, which are widely dispersed over the Internet (e.g.,
LDAP directories, Web servers etc.). The authorization en-
gine has to gather and verify the certificates relevant to the
user’s request and then to evaluate them against the access
policy in order to take a decision. Based on those systems
Keahey and Welch [9, 18], and Stell, Sinnot and Watt [17]
proposed fine-grained authorization solutions for the Grid
environment.

However, most of access control systems provide:

• static access control decisions (not history- and
context-aware),

• static, a priori fixed, trust relationships establishment
(no interactive and dynamic access management of
credentials).

The goal of this paper is to synthesizes the above aspects
into one comprehensive access enforcement framework.

3 The Fine-grained and History-based Be-
havioral Model

The model described in this section improves the secu-
rity of grid computational resources. Grid computational
resources are typically executed by applications on behalf
of (unknown) grid users. These applications perform ac-
tions on resources that are history- and context-sensitive
and, as so, each action modifies the state of the resources.
Therefore it is necessary to preserve the integrity of Grid
resources by fine-grained monitoring of actions performed
on them.

The approach is based on a fine-grained and history-
based model introduced in [2]. The monitoring is fine-
grained because instead of considering the execution of an
application as a single atomic action we split down the mon-
itoring on the basic operations performed by an application

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

during its execution. In particular, we refer to the system
calls that a grid application invokes on the operating system
level. Hence, an application execution corresponds to a se-
quence of actions that form the behavior of the application.

During an application execution each action changes the
state of the application that reflects its execution further.
Thus the notion of history must be taken into account.

In our model actions that an application is allowed to per-
form depend on the behavior of the application from pre-
vious actions. In fact, during an application execution we
determine for each action a that the application tries to per-
form, whether a is included in the current set of allowed
actions that, in turn, is determined according to the actions
that have been already performed from the beginning of the
execution. The main advantage of the history-based moni-
toring is that it defines dependencies among the actions that
an application is allowed to perform. In this way we can
state that a given action a is not allowed during the whole
execution of the application, but only when some other ac-
tions that a depends on have been already executed.

We introduce a behavioral policy in order to define the
set of actions and dependencies among them that applica-
tions must conform to. The behavioral policy defines traces
of executions (sequences of actions) that are allowed to be
performed by applications when using local Grid resources.

As an example, if the policy includes the sequence a.b.c,
where a, b and c are actions and the dot represents the se-
quential operator, the application can execute the action b

only if a has been already executed, and it cannot execute c

if only a has been executed. To define complex policies, a
set of operators is required to compose the actions, i.e. the
system calls, in the most proper way to represent a given
behavior. The following grammar shows the operators to
define a behavioural policy:

P ::= α.P ‖ p(~x).P ‖ ~x := ~e.P ‖ PorP ‖ Pparα1,..,αn
P ‖ Z

where P is a rule, α is an action in a set Act, p(~x) is a
predicate, ~x are variables and Z is a constant process defi-
nition Z = P . The informal semantics is the following:

• α.P is the sequential operator that represents the pos-
sibility of performing an action α and then behave as
P ;

• p(~x).P behaves as P in the case the predicate p(~x) is
true. p(~x) can also consist of a sequence of predicates
that are included in square brackets;

• ~x := ~e.P assigns to variables ~x the values of the ex-
pressions ~e and then behaves as P ;

• P1orP2 is the alternative operator that represents the
non deterministic choice between P1 and P2;

• P1parα1,...,αn
P2 is the synchronous parallel operator.

It expresses that both P1 and P2 policies must be si-
multaneously satisfied;

• Z is the constant process. We assume that there is a
specification for the process Z = P and Z behaves as
P .

The rigorous semantics is defined in [14] through seman-
tics rules. Derived operators may be considered, such as
P1parP2, that is the parallel operator and that represents
the interleaved execution of P1 and P2, and i(P), which
is the iteration operator. Informally, i(P) behaves as P x

times for any value of x. Also the policy sequence opera-
tor P1; P2 may be implemented using the policy language
operators (and control variables) (e.g., see [7]).

The previous grammar shows that our policy can also
include properties that have to be verified before the ap-
plication is allowed to invoke a given system call on the
resource. These properties are represented by predicates
that precede the systems calls they refer to. As an exam-
ple, a.[p(~x), q(~x)].b means that the properties p(~x) and q(~x)
must be verified before performing the action b, but it is not
required that are verified before the execution of the action
a. These properties could involve the evaluation of con-
ditions of various nature. For instance, they can force the
value of some system call parameter. In the following rule:

[eq(x1, READ)].open(x0,x1,x2,x3)

the predicate that precedes the open system call states that
the second parameter of this action, i.e. the open mode,
must be equal to READ. This allows the application to open
files in read mode.

Predicates could also include properties that concern the
evaluation of factors that does not involve only the system
calls and their parameters. The exploitation of external fac-
tors provide a flexible way to evaluate distinct kind of con-
ditions from the ones provided by the behavioural policy,
i.e. to integrate and exploit other policies with the behav-
ioral one. A very simple example could be a property that
evaluates whether the current time is within a given time
interval.

The definition of an integrated framework for the speci-
fication and analysis for security and trust in complex and
dynamic scenarios was introduced in [13]. In this way, the
behavioural policy could include properties that involve the
evaluation of the set of credentials submitted by the user.
In particular, a new predicate, tmCA,Ctmp (β) is embedded in
our policy to state that the evaluation of β is delegated to a
trust management engine. CA represents the set of creden-
tials that have been submitted by a grid user and which are
active during their life time (until they expire). In contrast,
Ctmp represents the set of temporal credentials that have

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

been dynamically generated according to the behavioural
policy and recent behavior of the user. Ctmp reflects the ad-
ditional rights that an application has. For the sake of space
limitation we omit the details on the rules used to generate
temporal credentials and refer the reader to Section 6 for a
comprehensive example of their usage.

Let us consider the following example.

[eq(x1,READ),tmCA,Ctmp (open(normal))].open(x0,x1,x2,x3)

It allows an application to open files in read mode only if
the property open(normal) is verified according to an access
policy. As soon as an external property has to be evaluated,
the behavioural policy delegates the decision to an external
access control module. For doing so, it first allocates the
sets CA and Ctmp regarding the current application (running
on behalf of a user) and then offloads the real access deci-
sion process to the external module specifying as input the
sets of active and temporal credentials. Once an access deci-
sion is taken the monitoring is resumed and further enforced
by the evaluation of the behavioural policy.

The enforcement of behavioural policy has to be strictly
coupled with a proper access control model described in the
next section.

4 Credential-based Access and Trust Man-
agement

Controlling access to Grid resources has become one of
the major security issues for the last several years. The term
credential has emerged as a widely used way of expressing
digital access rights in a distributed environment. Manage-
ment of credentials for access control, also refereed in the
literature as trust management [20], emerged as a key issue
for distributed Grid environment.

This section describes a novel access control prototype,
called iAccess, that leverages access and trust manage-
ment in a Grid computational infrastructure. iAccess is
based on the interactive access control model introduced by
Koshutanski and Massacci [11],[12].

In the iAccess framework each Grid domain has a se-
curity policy for access control PA and a security policy
for disclosure control PD. PA protects Grid’s resources by
stipulating what credentials a requester must satisfy to be
authorized for a particular resource while, in contrast, PD

defines which credentials among those occurring in PA are
disclosable so, if needed, can be demanded from the client.

Policies are written as normal logic programs [1]. A
logic program is a set of rules of the form:

A ← B1, . . . , Bn, not C1, . . . , not Cm (1)

A is called the head of the rule, each Bi is called a positive
literal and each not Cj is a negative literal, whereas the

conjunction of Bi and not Cj is called the body of the rule.
If the body is empty the rule is called a fact.

The intuition is to interpret the rules of a program P as
constraints on a solution set S (a set of ground atoms) for
the program itself. So, if S is a set of atoms, rule (1) is a
constraint on S stating that if all Bi are in S and none of Cj

are in it, then A must be in S.
We also need to keep a memory of past credentials sub-

mitted by a user. This is the role of CA, the set of active cre-
dentials that have been presented by a client in past requests
to other services within the Grid’s domain. We note that
this set is stored, activated and cleared externally to iAccess
module and accordingly to the Grid’s business logic. Grid
infrastructure is also responsible to properly update CA with
newly submitted credentials by the client.

Extending client’s profile, we introduce the notion of de-
clined credentials CN . CN keeps track of what credentials a
client has declined to provide within an access control ses-
sion for a particular service. CN is an internal set to iAccess
and, as so, it is activated when initially an access decision is
requested.

To request for an access decision, Gmon (the Grid en-
forcement module) presents as input: the resource r, the
set of client’s active credentials CA and a set of temporal
(dynamic) credentials generated by Gmon, namely Ctmp .
Here the use of temporal credentials reflects the fine-grained
access and enforcement control that is to be performed on
Grid resources.

Figure 1 shows that iAccess decision protocol. The in-
tuition behind the protocol is the following. When an ac-
cess decision is requested, iAccess loads the client’s set of
declined credentials CN , the set of missing credentials re-
quested in the last interaction CM, the policy for access PA

and policy for disclosure control PD. If there is no session
associated with the requested resource then iAccess sets up
CN and CM to an empty set.

Step 1 updates the declined credentials with those re-
quested in the last session interaction (CM) minus what
the client has accumulated in his set of active credentials
CA. Next, iAccess checks whether the requested resource is
granted by CA and Ctmp according to PA. If the check suc-
ceeds then the client has enough access rights and iAccess
returns grant r.

If the client does not have enough access rights then
iAccess protocol computes the set of disclosable credentials
CD (step 3a). This step is the staring point of the interac-
tive access control model [11]. CD contains all credentials
disclosed by the disclosure policy PD together with CA and
Ctmp . The set difference in this step is to assure that iAccess
does not ask for credentials that have already been presented
or declined by the client.

Once the disclosable credentials are computed, iAccess
performs a special reasoning over PA according to CD in

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

Internal Vars: CN , CM; Initially CN = CM = ∅
Input: r, CA, Ctmp ;
Output: grant/deny/ask(CM);

iAccess(r, CA, Ctmp){
1. update CN = CN ∪ (CM \ CA), where CM is from the last interaction,
2. check whether PA together with CA and Ctmp grant r,
3. if the check succeeds then return grant else

(a) compute the set of disclosable credentials CD from PD according to CA and Ctmp . From the
resulting set remove all already presented and already declined credentials, namely CD = CD \
(CN ∪ CA).

(b) compute a set of missing credentials CM among the disclosable ones (CM ⊆ CD) such that PA

together with CA and Ctmp and CM grant r,
(c) if no such set exists then return deny else
(d) return ask(CM).

}

Figure 1. iAccess Decision Protocol

order to find a set of missing credentials that grants the re-
source (step 3b). We refer the reader to [11] for details.

If such a set is found then iAccess returns it back spec-
ifying that there is a potential solution for the client to get
the resource. If no missing set is found then iAccess denies
access to r. The reason for denial would be that either the
client’s set of active credentials explicitly denies access to
the resource, according to PA, or the client does not have
enough access rights to disclose more information fromPD

so that step 3b can find a solution for the resource.
We remark that Ctmp plays an important role for a fine-

grained and context-aware access control process, as we
shall see in Section 6.

5 The Architecture

We have not seen yet the architecture that enforces the
overall access control process. This section describes the ar-
chitecture that enforces proper access decisions when Java
applications are executed by the Globus toolkit [4].

Informally, we have divided the architecture in three lev-
els: resource level, execution level and operating system
level. Figure 2 shows our architecture and its components.

The operating system level represents local Grid re-
sources and their low level execution. Rather, the resource
level comprises the Globus toolkit and the JVM. It is re-
sponsible for handling user’s requests and executing user’s
applications in a mobile and transparent way wrt the user’s
location.

The execution level resides between the resource level
and the OS of local resources. This level is where all the se-

curity components that build up our architecture take place.
There are four security components:

User’s Profile module keeps the profiles of active users,
i.e. users’ active credentials that have been presented
in past interactions with other services within the local
Grid domain. This module is responsible for validat-
ing, storing, updating and clearing1 user’s credentials.

Policy Repository module stores the local site’s security
policies. In particular, it stores the behavioral policy,
the access policy and the disclosure policy.

Gmon module is the policy enforcement point and the be-
havioural policy evaluation point of our architecture.

iAccess component is the trust management decision point
of the architecture.

We have modified the Globus toolkit such that whenever
access to a Grid resource is performed Gmon intercepts it
and evaluates whether access to that resource is allowed to
be performed or not. Whenever a client requests a service,
presenting some credentials, the Globus toolkit allocates the
Java application and starts its execution. Gmon intercepts
the Globus service request and extracts information relevant
to the behavioral policy. During the execution of the Java
application, for each system call invoked by the JVM, the
architecture performs the following steps:

1. Gmon intercepts the system call and the Java applica-
tion is suspended.

1We note that user’s active credentials are time dependent and should
be periodically cleared up from the already expired credentials.

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

O S

Computational Resource

Policy Repository

Behavioural Access and Disclosure

Service Request

Java Application

Java Application

Intercepted System Calls

JNI

Deny

Re
fle

ct
io

n

Intercepted Service Request

Behavioural
Policy

Request for Additional Credentials

Globus

Request for Additional User Credentials

Credentials

Gmon

User’s Credentials

U
ser’s Credentials

User’s Profile

Execution Level

Resource Level

Fabric Level

A
ccess and D

isclosure Pols

Policy Enforcement Point

iAccess
Behaviouarl Policy Evaluation Point Access and Trust Management Decision Point

user’s active and temporal credentials
Access Decision Request:

Grant / Deny / Additional Credentials

hookhook

JVM

System Calls

Figure 2. The Architecture

2. Then, Gmon checks whether the call is allowed ac-
cording to the history of executions and the be-
havioural policy, i.e. if in the behavioural policy there
is at least a rule that includes this call and all the pre-
vious calls in this rule have been already successfully
performed by the application. If the call is not allowed
according to the history then the Java application is ter-
minated.

3. Next, Gmon checks whether an access decision needs
to be taken for the intercepted system call and invoked
iAccess with the following input:

• request r: <system call, mode of execution>,

• temporal credentials generated by Gmon, Ctmp ,
and

• user’s active credentials, CA.

4. iAccess loads the local access and disclosure control
policies in order to take an access decision.

5. when Gmon receives back the result of iAccess it en-
forces the access decision by the following ways:

• if Grant then invoke the system call on Operating
System (OS) level and resumes the execution of
the Java application,

• if Deny then terminate the execution of the Java
application,

• if Missing Credentials then return back to the
client the need to provide additional creden-
tials and suspend the application until the client
replies with new credentials.

6 Integrated Security Policy Example

To show the practical relevance of the framework this
section presents an example of the security policies intro-
duced so far and a Grid usage scenario.

Figure 3 shows the three polices that define the right se-
quence of actions to be performed and enforced on the sets
of critical, Scritical, and non-critical resources, S.

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

Access Policy

dominate(user, user) ← .

dominate(admin, user) ← .

dominate(admin, admin) ← .

grant(open, normal) ← cred(Holder,Attr), dominate(Attr, user).

grant(send, normal) ← cred(Holder,Attr), dominate(Attr, user).

grant(open, critical) ← cred(Holder,Attr), dominate(Attr, admin).

grant(send, critical) ← cred(Holder,Attr), dominate(Attr, admin),

tmp cred(Holder, well behaved).

Disclosure Policy

cred(Holder, user) ← .

cred(Holder, admin) ← cred(Holder, user),tmp cred(Holder, well behaved).

Behavioral Policy

S := {/usr/share/file0.txt, /usr/share/file1.txt}
Scritical := {/sys/kernel/config0.txt, /sys/kernel/config1.txt}
AH := {host1.iit.cnr.it, host2.iit.cnr.it, host3.iit.cnr.it}
OS := false

[eq(x1,AF INET),eq(x2,SOCK STREAM),eq(x3,IPPROTO TCP)].socket(x1 ,x2,x3,sd).
[eq(x4, sd),eq(x6,2000)].bind(x4, -, x6, -, -).
[eq(x9, sd), in(x10, AH)].connect(x9 , x10, -, -).
i([eq(OS, false),tmCA ,Ctmp (send(normal)),eq(x13 , sd)].send(x13 , -, -, -, -) or

[eq(OS, true),tmCA,Ctmp (send(critical)),eq(x18 , sd))].send(x18, -, -, -, -) or
[eq(x23, sd)].recv(x23 , -, -, -, -)).

[eq(x28 , sd)].close(x28 ,-).

[in(x30 ,Scritical),tmCA,Ctmp (open(critical)),eq(x31 , READ)].open(x30 ,x31,-,fd)
OS:=true.
i([eq(x33, fd)].read(x33 , -, -, -)).
[eq(x37 , fd)].close(x37 , -)

[in(x39 , S),tmCA,Ctmp (open(normal)),eq(x40 , READ)].open(x39,x40,-,fd)
i([eq(x42, fd)].read(x42 , -, -, -)).
[eq(x46 , fd)].close(x46 , -)

Figure 3. Example of Integrated Security Policy

The behavioural policy consists of three sets of rules that
define the sequences of actions that can be performed by an
application. For the sake of simplicity, the parameters and
the results of the system calls are explicitly represented by
a symbol xi only if their values are exploited by a predicate
otherwise a placeholder is used.

The first set of rules allows communications with remote
hosts predefined within the set AH . The system call in the
first rule is socket(x1,x2,x3,sd). x1,x2, x3 represent
the system call parameters and sd represents the result.
The socket() system call is preceded by the predi-
cate eq(x1,AF INET), eq(x2,SOCK STREAM),
eq(x3,IPPROTO TCP), that define the allowed values
for the socket parameters. In our case they state that
the socket has to be a TCP one. Here, the evaluation of
user’s credentials is not required to open a socket. After
the socket call, the application can issue a bind and a

connect system calls to establish a connection with
a remote server. The predicates that precede these two
system calls do not require any credentials evaluation as
they state that these calls must exploit the socket previously
opened (represented by the variable sd). The value of the
socket local port must be 2000 and the connection can be
established only with hosts within the set AH .

In the following lines of the behavioural policy, the
application can iteratively send or receive data on estab-
lished connections. To send data, the evaluation of the
user credential is required. tmCA,Ctmp(send(normal))
evaluates whether the user can send non critical data to
remote hosts. tmCA,Ctmp(send(critical)), instead,
evaluates whether the grid user is trusted to send critical
information to remote hosts. In particular, the operator
tmCA,Ctmp(send(normal)) indicates that the evaluation
of the property send(normal) is delegated to a trust manage-

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

ment engine, where CA is the set of credentials submitted
by the user, and Ctmp is the set of temporary credentials.

In the behavioural policy there are two entries concern-
ing the send system call. The predicate of the first en-
try, tmCA,Ctmp (send(normal)), requires that the value of the
variables OS is false. The second entry, instead, requires
the evaluation of tmCA,Ctmp (send(critical)) if the value of the
variables OS is true.

If the variable OS is false it means that no critical file
has been opened by the application otherwise if it is true
then the application has opened a critical file during its exe-
cution.

Alternatively of the send, the application can perform
recv system call to receive data from its communication
partner. In this case, there are no predicate that involve cre-
dential evaluation.

The second and third sets of rules define the behavior to
read files from the sets S and Scritical. Here, when a critical
file is opened the value of the variable OS is set to true.

As already described, the credentials evaluated by the
iAccess engine include not only those submitted by the user
but also some credentials that have been dynamically gen-
erated by Gmon according to some predefined rules. The
temporal credentials are stored in the User’s Profile compo-
nent of the architecture.

As an example, the behavioural policy could grant spe-
cial well − behaved rights to applications that are running
from two hours without doing anything in conflict with the
behavioral policy.

The access policy shown in Figure 3, uses the predi-
cate grant(Operation, Operation Mode) to express that
access is granted on operation Operation executed in a
mode Operation Mode if the conditions in the body of
the rule are satisfied. We represent variables with staring
capital letter (e.g. Holder, Attr etc) and constants starting
with small case letters (e.g., normal, send etc). A vari-
able indicates any value in this field. We explicitly note that
for a finer-grained access control one can extend the pred-
icate grant(Operation, Resource, Operation Mode) so
that it can be specified different conditions on different re-
sources when operated in different modes. This is possible
because one of the advantages of iAccess model is that it
does not pose any restrictions on policy structure (refer to
[11] for details).

The first three rules (facts) of the access policy state that
the role user dominates itself, the role admin dominates
the user one as well as itself. The fourth and fifth rules say
that operations open and send performed on all resources in
a normal mode are granted to any client having presented
a credential for a role that dominates the user one. Here the
Holder variable represents any client.

Rule sixth grants operation open in a critical mode only
to roles dominating the admin one. Rather, the last rule

of the access policy says that operation send in a critical

mode is granted to those clients that have the admin role
and, at the same time, has not behaved suspiciously by the
time of access.

The disclosure policy says that the need for a user cre-
dential is disclosed to any client, i.e. it is not sensitive infor-
mation. Rather, the need for admin credential is disclosed
only to those clients that have presented a credential iden-
tifying them as legitimate users and, at the same time, the
monitoring system attests them as well − behaved.

The following example shows how the three policies co-
operate in order to enforce proper access rights. Here we
assume that the grid application has already established a
client socket connection with the Grid application domain.

Example 1 (Grid Resource Usage Scenario) Let us have
a Java application running on behalf of a grid user in a
Grid domain. Since we are in an autonomic scenario so the
client does not have any a priori information of what the
requirements are to execute the application. So, initially the
client does not have any active credentials in the system, i.e.
his profile of active credentials CA is the empty set.

Now, let us suppose that the application tries to
open a file ”/usr/share/file0.txt”. At this point Gmon
detects that ”file0.txt” is a non-critical one and then,
enforcing the behavioural policy specified by predicate
tmCA,Ctmp (open(normal)), it invokes iAccess for an access
decision.

The input to iAccess is: the request
r=<open, normal>; client’s set of active credentials
CA = ∅; and the set of temporal credentials, generated by
Gmon, Ctmp = ∅.

Once iAccess is invoked, it checks whether the client has
enough access rights for the request r. Loosely speak-
ing, we check whether grant(open, normal) can be de-
duced from a rule in the access policy PA. Since the
client has no active credentials the check fails (step 2 in
Fig. 1) and iAccess computes the set of disclosable creden-
tials CD = {cred(Holder, user)}. Next, iAccess computes
the set of missing credentials, among the disclosable ones,
that grant r. In our case CM = {cred(Holder, user)}.
Then, Gmon returns back to the grid user the need for
cred(Holder, user) and awaits until the user replies.

On the next interaction the client presents a credential
that attests him as a legitimate user of the Grid domain, i.e.
cred(paolo mori, user). Then, Gmon requests iAccess for
an access decision presenting client’s active credentials, in
our case CA = {cred(paolo mori, user)}. Next, iAccess
returns grant according to PA which is then enforced by
Gmon.

The following example shows the role of temp creden-
tials for fine-grained access control.

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

Example 2 (Use of Temporal Credentials) Let us assume
that Example 1 has already taken place and now the ap-
plication, running on behalf of the user, tries to open a
file ”/sys/kernel/config0.txt”. Gmon detects that the file
is a critical one and, according to the behavioural pol-
icy, invokes iAccess for an access decision presenting:
r=<open, critical>; CA = {cred(paolo mori, user)};
and Ctmp = ∅.

Now, iAccess returns deny. It is because according
to PA the client does not have enough access rights to
get r and according to the disclosure policy he does not
have enough credentials to disclose more credentials so
that iAccess can find a missing solution. At that point
CD = {cred(Holder, user)} and step 3b in Fig. 1 fails to
find a solution for r. Next, Gmon enforces the denial answer
by terminating the application.

Now, let us have the above scenario but in case the
client’s application has behaved well within the last 2
hours according to the behavioral policy. Then when
the application performs open operation on the file
”/sys/kernel/config0.txt” Gmon invokes iAccess with input:
r=<open, critical>; CA = {cred(paolo mori, user)};
and Ctmp = {tmp cred(paolo mori, well behaved)}. At
this point, iAccess instead of denial returns the need for ad-
ditional credentials CM = {cred(paolo mori, admin)}.
It is because now the disclosure policy discloses the need
for cred(Holder, admin) and iAccess can find a solution
for r. Then Gmon returns back to the client the need for
admin credential and suspends the application. On the next
interaction, if the client presents a certificate for admin then
iAccess grants access and Gmon enforces the system call
open.

Now, let the user’s application, having already admin
status, start behaving suspiciously and within the time inter-
val of 2 hours open more critical files than those considered
for well-behaved applications. Then, if the application tries
to send information to a remote host, Gmon will detect that
it is a send operation in a critical mode (critical because
at least one critical file was open) and requests iAccess for
an access decision. At this point Ctmp = ∅ and accord-
ing to the access policy grant on send in critical mode is
allowed only to applications with administrator privileges
which have not behaved suspiciously, i.e. which are well-
behaved certified. In this case iAccess returns denial and
Gmon terminates the application.

The example above shows that if a user behaves well ac-
cording to some rules then he is more trusted to obtain sen-
sitive information for missing credentials when accessing
Grid resources. On the other side, even a user has high ac-
cess rights, he may not have all operations allowed if he
behaves suspiciously.

In this section we presented the dynamic nature of our
access enforcement framework and how history and context

play an important role for a fine-grained access control.

7 Conclusions and Future Work

In this paper we presented a comprehensive framework
for access control monitoring and enforcement on Grid
computational resources. The framework provides fine-
grained and history-based behavioral model which captures
dynamic and context-aware access properties by generat-
ing temporal credentials each time when an access decision
needs to be taken.

During an application execution if user’s credentials are
not enough to execute a resource the framework creates a
session within which it interacts with the user in order to
establish enough trust (access rights) needed to execute the
resource.

Future work is in the direction of extending the frame-
work to capture security policies on the level of Virtual Or-
ganizations. Typically each VO has security requirements
that are to be enforced on the partners involved in the VO.
In this way the framework will provide a way that global se-
curity policies can be combined with local site ones in order
to obtain the final policy to be enforced.

References

[1] K. Apt. Logic programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science. Elsevier, 1990.

[2] F. Baiardi, F. Martinelli, P. Mori, and A. Vaccarelli. Im-
proving grid service security with fine grain policies. In
Proceedings of On the Move to Meaningful Internet System
2004: OTM Workshops, LNCS, volume 3292, pages 123–
134, 2004.

[3] D. Chadwick and A. Otenko. The permis x.509 role based
privilege management infrastructure. In SACMAT ’02: Pro-
ceedings of the seventh ACM symposium on Access control
models and technologies, pages 135–140, New York, NY,
USA, 2002. ACM Press.

[4] I. Foster. Globus toolkit version 4: Software for service-
oriented systems. In Proceedings of IFIP International Con-
ference on Network and Parallel Computing, pages 2–13.
Springer-Verlag, LNCS 3779, 2005.

[5] I. Foster, C. Kesselman, L. Pearlman, S. Tuecke, and
V. Welch. A community authorization service for group
collaboration. In Proceedings of the3rd IEEE International
Workshop on Policies for Distributed Systems and Networks
(POLICY’02), pages 50–59, 2002.

[6] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A secu-
rity architecture for computational grids. In Proceedings 5th
ACM Conference on Computer and Communications Secu-
rity Conference, pages 83–92, 1998.

[7] C. Hoare. Communicating sequential processes. Commun.
ACM, 21(8):666–677, 1978.

[8] M. Humphrey, M. Thompson, and K. Jackson. Security for
grids. Proceedings of the IEEE, 93(3):644–652, 2005.

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

[9] K. Keahey and V. Welch. Fine-grain authorization for re-
source management in the grid environment. In GRID ’02:
Proc. of the Third International Workshop on Grid Comput-
ing - LNCS, volume 2536, pages 199–206, 2002.

[10] H. Koshutanski. A survey on distributed access control sys-
tems for web business processes. International Journal of
Network Security (IJNS), To appear.

[11] H. Koshutanski and F. Massacci. Interactive access control
for Web Services. In Proceedings of the 19th IFIP Infor-
mation Security Conference (SEC 2004), pages 151–166,
Toulouse, France, August 2004. Kluwer Press.

[12] H. Koshutanski and F. Massacci. Interactive credential ne-
gotiation for stateful business processes. In Proceedings
of the 3rd International Conference on Trust Management
(iTrust), volume 3477 of LNCS, pages 257–273, Rocquen-
court, France, May 2005. Springer-Verlag Press.

[13] F. Martinelli. Towards an integrated formal analysis for se-
curity and trust. In FMOODS, pages 115–130, 2005.

[14] F. Martinelli, P. Mori, and A. Vaccarelli. Towards continu-
ous usage control on grid computational services. In Proc.
of International Conference on Autonomic and Autonomous
Systems and International Conference on Networking and
Services 2005, IEEE Computer Society, page 82, 2005.

[15] N. Nagaratnam, P. Janson, J. Dayka, A. Nadalin, F. Sieben-
list, V. Welch, I. Foster, and S. Tuecke. Security architecture
for open grid services. Global Grid Forum Recommenda-
tion, 2003.

[16] L. Pearlman, C. Kesselman, V. Welch, I. Foster, and
S. Tuecke. The community authorization service: Status and
future. Proceedings of Computing in High Energy and Nu-
clear Physics (CHEP03): ECONF, C0303241:TUBT003,
2003.

[17] A. J. Stell, R. O. Sinnott, and J. P. Watt. Comparison of ad-
vanced authorisation infrastructures for grid computing. In
Proc. of High Performance Computing System and Applica-
tions 2005, HPCS, pages 195–201, 2005.

[18] M. Thompson, A. Essiari, K. Keahey, V. Welch, S. Lang,
and B. Liu. Fine-grained authorization for job and resource
management using akenti and the globus toolkit. In Pro-
ceedings of Computing in High Energy and Nuclear Physics
(CHEP03), 2003.

[19] M. Thompson, A. Essiari, and S. Mudumbai. Certificate-
based authorization policy in a pki environment. ACM
Transactions on Information and System Security, (TISSEC),
6(4):566–588, 2003.

[20] S. Weeks. Understanding trust management systems. In
IEEE Symposium on Security and Privacy (SS&P). IEEE
Press, 2001.

[21] XACML. eXtensible Access Control Markup Language
(XACML), 2004. www.oasis-open.org/committees/xacml.

0-7695-2653-5/06/$20.00 (c) 2006 IEEE

	Select a link below
	Return to Proceedings

