
E Pluribus Unum⋆

Deduction, Abduction and Induction, the Reasoning

Services for Access Control in Autonomic Communication

Hristo Koshutanski and Fabio Massacci

Dip. di Informatica e Telecomunicazioni - Univ. di Trento
via Sommarive 14 - 38050 Povo di Trento (ITALY)

{hristo, massacci}@dit.unitn.it

Abstract. Autonomic Communication is a new paradigm for dynamic
network integration. An Autonomic Network crosses organizational bound-
aries and is provided by entities that see each other just as business
partners. Policy-base network anagement already requires a paradigm
shift in the access control mechanism (from identity-based access control
to trust management and negotiation), but this is not enough for cross
organizational autonomic communication. For many services no partner
may guess a priori what credentials will be sent by clients and clients
may not know a priori which credentials are required for completing a
service requiring the orchestration of many different autonomic nodes.
We propose a logical framework and a Web-Service based implementation
for reasoning about access control for Autonomic Communication. Our
model is based on interaction and exchange of requests for supplying or
declining missing credentials. We identify the formal reasoning services
that characterise the problem and sketch their implementation.

1 Introduction

Controlling access to services is a key aspect of networking and the last few years
have seen the domination of policy-based access control. Indeed, the paradigm is
broader than simple access control, and one may speak of policy-based network
self-management (e.g. [1] or the IEEE Policy Workshop series). The intuition is
that actions of nodes “controlling” the communication are automatically derived
from policies. Nodes look at events and requests presented to them, evaluates the
rules of their policies and derive actions [1, 2]. Policies can be “simple” iptables

rules for Linux firewalls (see http://www.netfilter.org/) or complex logical
policies expressed in languages such as Ponder [3].

Autonomic Communication adds new challenges: a truly autonomic network
is born when nodes are no longer within the boundary of a single enterprise
which could deploy its policies on them and guarantee interoperation. Nodes are

⋆ This work is partially funded by EU IST-2001-37004 WASP, EU IST E-NEXT NoE,
FIRB RBNE0195K5 ASTRO and FIRB RBAU01P5SS projects.

M. Smirnov (Ed.): WAC 2004, LNCS 3457, pp. 179–190, 2005.
c© IFIP International Federation for Information Processing 2005



180 H. Koshutanski and F. Massacci

partners that offer services and lightly integrate their efforts into one (hopefully
coherent) network. This cross enterprise scenario poses novel security challenges
with aspects of both trust management systems and workflow security.

From trust management systems [4, 5, 6] it takes the credential-based view:
access to services is offered by autonomic nodes on their own and the decision
to grant or deny access must rely on attribute credentials sent by the client. In
contrast with these systems, we have a continuous process and assignment of
permissions to credentials must look beyond the single access decision.

From workflow access control [7, 8, 9, 10] we borrow all classical problems such
as dynamic assignment of roles to users, separation of duties, and assignment
of permissions to users according the least privilege principles. In contrast with
such schemes, we can no longer assume that the enterprise will assign tasks and
roles to users (its employees) in such a way that makes the overall flow possible
w.r.t. its security constraints.

Astracting away the details of the policy implementation, we can observe that
only one reasoning service is actually used by policy based self-management:
deduction. Given a policy and a set of additional facts and events, we find out
all consequences (actions or obligations) of the policy and the facts, i.e. whether
granting the request can be deduced from the policy and the current facts.
Policies can be different [11, 6, 12, 8] but the kernel reasoning service is the same.

Autonomic communication needs at least another reasoning service: abduc-
tion [13]. Loosely speaking, abduction is deduction in reverse: given a policy
and a request for access to services, find the credentials/events that would grant
access, i.e. a (possibly minimal) set of facts that added to the policy would make
the request a logical consequence. Abduction is a core service for the interac-
tive access control framework in autonomic communication. In this framework
a client may be asked on the fly for additional credentials and the same may
disclose them or decline to provide them. We need an interactive control on both
the client and server sides whenever the client requires some evidence from the
server before disclosing his own credentials.

We might also use induction [14]: given a heuristic function to measure the
goodness of a rule and some examples of granted and denied requests, invent the
access policies covering the positive examples and not the negative ones.

Here, we sketch the reasoning framework for access control for autonomic
communication based on interaction for supplying missing credentials or for re-
voking “wrong” credentials (§2). We identify the reasoning services deduction
vs abduction (§4), and induction (§7), and sketch the solution for stateful ac-
cess control (§5) and mutual negotiation (§6). A running example (§3) makes
discussion concrete. A discusssion of future challenges concludes the paper.

2 Access Control with Security Policies

Using Datalog and logic programs for security policy is customary in computer
security [11, 6, 12, 8] and our formal model is based on normal logic programs
under the stable model semantics [15]. We have predicates for requests, creden-



E Pluribus Unum 181

Role :Ri ≻ Role :Rj when role Role :Ri dominates role Role :Rj .
Role :Ri ≻WebServ:S Role :Rj when role Role :Ri dominates, for service WebServ :S, the role Role :Rj .
assign (P, WebServ :S) when an access to the service WebServ : S is granted to P . Where P can be

either a Role :R or User :U .

(a) Predicates for assignments to Roles and Services

declaration (User :U) it is a statement by the User :U for its identity.
credential (User :U, Role :R) when User :U has a credential activating Role :R.
credentialTask (User :U, WebServ :S) when User :U has the right to access WebServ :S.

(b) Predicates for Credentials

running (P, WebServ :S, number :N) when the number :N-th activation of WebServ :S is executed by P .
abort (P, WebServ :S, number :N) if the number :N activation of WebServ :S within a workflow aborts.
success (P, WebServ :S, number :N) if the number : N-th activation of WebServ : S within a workflow

successfully executes.
grant (P, WebServ :S, number :N) if the number :N request of WebServ :S has been granted
deny (P, WebServ :S, number :N) if the number :N-th request of WebServ :S has been denied.

(b) Predicates for System’s History and State

Fig. 1. Predicates used in the model

tials, assignments of users to roles and of roles to services, see Figure 1. They
are self explanatory, except for role dominance: a role dominate another if it has
more privileges. We have constants for users identifiers, denoted by User :U , for
roles, denoted by Role :R, and one for services, denoted by WebServ :S.

Each partner has a security policy for access control PA and a security policy
for disclosure control PD. The former is used for making decision about access
to the services offered by the partner. The latter is used to decide the credentials
whose need can be potentially disclosed to the client.

We keep a set of active (unrevoked) credentials CP presented by the client in
past requests to other services offered by the same server, and the set of declined
credentials CN compiled from the client’s past interactions. To request a service
the client submit a set of presented credentials Cp , a set of revoked credentials
CR and a service request r. We assume that Cp and CR are disjoint. In this
context, CN is assigned the difference between the missing credentials CM, the
client was asked in the previous interaction, and the ones presented now. For
stateful autonomic nodes we’ll also need the history of access to services H.

3 A Running Example

Let us assume that we have a Planet-Lab shared network between the University
of Trento and Fraunhofer institute in Berlin in the context of the E-NEXT net-
work, and that there are three main access types to the resources: read – access to
data residing on the Planet-Lab machines; run – access to data and possibility to
run processes on the machines; and configure – including the previous two types
of accesses plus the possibility of configuring network services on the machines.



182 H. Koshutanski and F. Massacci

Fig. 2. Joint Hierarchy Model

All Planet-Lab credentials (certificates) are signed and issued by trusted au-
thorities and the crypto validation is performed before the actual access control
process. In other words, a preprocessing step validates and transforms the cer-
tificates into a form suitable for the formal model – credential (User :U,Role :R).

Fig. 2 shows the role hierarchy, where higher the role in the hierarchy, more
powerful it is. A role dominates another role if it is higher in the hierarchy and
there is a direct path between them. Fig. 3 shows the access and disclosure
policies. authNetwork (IP,DomainName) is domain specific: the first argument
is the IP address of the authorized network endpoint (the client’s machine) and
the second one the domain where the IP address comes from.

Example 1. Rules (1,2) give access to the shared network content to everybody
from UniTrento and Fraunhofer, regardless of IP and role. For rules (6,7), if a
user has got a disk access and is a researcher at UniTrento or junior researcher at
Fraunhofer, it has additional rights. Rules (10,11) give full access from anywhere
only to members of the board of directors and to full professors.

Example 2. Rule (5) relaxes the previous two and allows access from any place
of the institutions provided users declare their ID and present some role-position
certificate of their organization or at least a Planet-Lab membership credential.

Example 3. Rules (1,2) in the disclosure policy show the need for the client to
declare its ID if the same comes from an authorized network of the respective
organizations; rule (3) discloses the need for Planet-Lab membership credential
if the client has already declared its ID; and rule (4) discloses (upgrades) the
need of a higher role-position credential.

4 Deduction vs Abduction

The basic reasoning service for policy-based approches is deduction:

Definition 1 (Logical Consequence and Consistency). We use the symbol
P |= L, where P is a policy and L is either a credential or a service request, to
specify that L is a logical consequence of a policy P . P is consistent (P 6|= ⊥) if
there is a model for P .



E Pluribus Unum 183

Access Policy:

(1) assign (∗, request(read)) ← authNetwork (∗, ∗.unitn.it).
(2) assign (∗, request(read)) ← authNetwork (∗, ∗.fraunhofer.de).
(3) assign (∗, request(execute)) ← authNetwork (193.168.205.∗, ∗.unitn.it).
(4) assign (∗, request(execute)) ← authNetwork (198.162.45.∗, ∗.fraunhofer.de).
(5) assign (User, request(execute)) ← assign (User, request(read)), declaration (User),

credential (User, Role), Role º memberP lanetLab.
(6) assign (User, request(addService)) ← assign (User, request(execute)), declaration (User),

credential (User, Role), Role º researcher.
(7) assign (User, request(addService)) ← assign (User, request(execute)), declaration (User),

credential (User, Role), Role º juniorResearcher.
(8) assign (User, request(addService)) ← authNetwork (∗, ∗.it), declaration (User),

credential (User, Role), Role º assProf.
(9) assign (User, request(addService)) ← authNetwork (∗, ∗.de), declaration (User),

credential (User, Role), Role º seniorResearcher.
(10) assign (User, request(addService)) ← authNetwork (∗, ∗), declaration (User),

credential (User, Role), Role º fullProf.
(11) assign (User, request(addService)) ← authNetwork (∗, ∗), declaration (User),

credential (User, Role), Role º boardOfDirectors.

Release Policy:

(1) declaration (User) ← authNetwork (∗, ∗.unitn.it).
(2) declaration (User) ← authNetwork (∗, ∗.fraunhofer.de).
(3) credential (memberP lanetLab, User) ← declaration (User).
(4) credential (RoleX, User) ← credential (RoleY, User), RoleX ≻ RoleY.

Fig. 3. Proxy Access and Release Policies for the Online Library

This reasoning service is used in most logical formalizations [16]: if the request
r is a consequence of the policy and the credentials (i.e. PA∪Cp |= r), then access
is granted otherwise it is denied.

Example 4. A request coming from dottorati.dit.unitn.it with IP 193.168.205.11
for access to a fellowship application form on the subnet is granted by rule (3).

The next service is abduction: given a policy and a request, find the creden-
tials that added to the policy would allow to grant the request.

Definition 2 (Abduction). The abductive solution over a policy P , a set of
predicates (credentials) H (with a partial order ≺ over subsets of H) and a
ground literal L is a set of ground atoms E such that: (i) E ⊆ H, (ii) P ∪E |= L,
(iii) P ∪ E 6|= ⊥, (iv) any set E′ ≺ E does not satisfy all conditions above.

Traditional p.o.s are subset containment or set cardinality. Other solutions are
possible with orderings over predicates.

This reasoning service is used in the overall interactive access control algo-
rithm shown in Fig. 4. Initially the client will send a set of client’s credentials
Cpand a service request r. Then we update client’s profile, i.e. declined and active
credentials and check whether the active credentials unlock r according to PA.
In the case of denial, we compute all credentials disclosable from CP according
to PD and from the resulting set remove all CN . Then we compute all possible
subsets of CD that are consistent with the access policy PA and, at the same



184 H. Koshutanski and F. Massacci

Global vars: CN , CP ;
Internal input: PA, PD;
Output: grant/deny/ask(CM);

1. client’s input: Cp and r,
2. update CN = (CN ∪ CM) \ Cp , where CM is from the last interaction,
3. update CP = CP ∪ Cp ,
4. verify that the request r is a security consequence of the policy access PA and

presented credentials CP , namely PA ∪ CP |= r and PA ∪ CP 6|= ⊥
5. if the check succeeds then return grant else

(a) compute the set of disclosable credentials CD as
CD = {c | c credential that PD ∪ CP |= c} \ (CN ∪ CP),

(b) use abduction to find a minimal set of missing credentials CM ⊆ CD such
that both PA ∪ CP ∪ CM |= r and PA ∪ CP ∪ CM 6|= ⊥ ,

(c) if no set CM exists then return deny else
(d) return ask(CM) and iterate.

Fig. 4. Interactive Access Control Algorithm

time, grant r. Out of all these sets (if any) the algorithm selects the minimal
one. We point out that the minimality criterion could be different for different
contexts (see [17] for some examples).

Remark 1. Using declined credentials is essential to avoid loops in the process
and to guarantee the success of interaction in presence of disjunctive information.

For example suppose we have alternatives in the partner’s policy (e.g., “present
either a VISA or a Mastercard or an American Express card”). An arbitrary
alternative can be selected by the abduction algorithm and on the next inter-
action step (if the client has declined the credential) the abduction algorithm is
informed that the previous solution was not accepted.

Example 5. Assuming the access and release policies in Figure 3, let us play the
following scenario. A senior researcher at Fraunhofer institute FOKUS wants to
reconfigure an online service for paper submissions, of a workshop. The service
is part of a big management system hosted at the University of Trento’s network
that is part of Planet-Lab. So, for doing that, at the time of access, he presents
his employee membership token, issued by a Fraunhofer certificate authority,
presuming that it is enough as a potential customer.

Formaly speaking, the request comes from a domain fokus.fraunhofer.de with
credential for Role : employee together with a declaration for a user ID, John
Milburk. According to the access policy the credentials are not enough to get
full access and so the request would be denied.

Then, following the algorithm in Figure 4, it is computed the set of disclosable
credentials from the disclosure policy and the user’s available credentials, and the



E Pluribus Unum 185

minimal set of credentials, out of those, that satisfies the request. The resulting
set is {credential (User :JohnMilburk,Role :juniorResearcher)}. Then the need
for this credential is return back to the user.

Example 6. On the next interaction step, because the user is a senior researcher,
the same declines to present the requested credential as just returning the same
query with no presented credentials.

So, the algorithm updates the user’s session profile and the outcome is the
need for credential credential (User :JohnMilburk,Role :seniorResearcher).

5 Stateful AC: Missing and Excessing Credentials

What happens if access to services is determined also by the history of past
executions? For instance in the example by Atluri and Bertino [8–pag.67] a
branch manager of a bank clearing a cheque cannot be the same member of staff
who has emitted the cheque. So, if we have no memory of past credentials then
it is impossible to enforce any security policy for separation of duties on the
application workflow. The problems are the following:

– the request may be inconsistent with some role used by the client in the past;
– the new set of credential may be inconsistent with requirements such as

separation of duties;
– in contrast to intra-enterprise workflow systems [8], the partner offering the

service has no way to assign to the client the right set of credentials which
would be consisted with his future requests (because he cannot assign him
future tasks).

So, we must have some roll-back procedure by which, if the user has by chance
sent the “wrong” credentials, he can revoke them.

Our interactive access control solution for stateful services and applications
is shown in Figure 5.

The logical explanation of the algorithm is the following. Initially when a
client requests a specific service the authorization mechanism creates a new
session with global variables declined credentials CN , not revoked credentials
CU , missing credentials CM and excessing credentials CE set up to empty sets.
Then once the session is started, internally, the algorithm loads the policies for
access and disclosure control PA and PD together with the two external sets
history of execusion H and client’s active credentials CP .

Following that, the first step in the algorithm is to get the client’s input as
sets of currently presented credentials Cp , the revoked ones Cr and the service
request r. Then the set of active credentials CP is updated as removing the set
Cr from it and then adding the set of currently presented credentials (rf. step 2).
Then in step 3 declined credentials CN are updated as credentials the client was
asked in the last interactions minus the ones that he has currently presented.
Analogously, in step 4, not revoked credentials CU are updated as the excessing



186 H. Koshutanski and F. Massacci

Global vars: CN , CU , CM, CE ; Initially CN = CU = CM = CE = ∅;
Internal input: PA, PD, H, CP ;
Output: grant/deny/< ask(CM), revoke(CE) >;

1. client’s input: Cp , Cr and r,
2. update CP = (CP \ Cr ) ∪ Cp ,
3. update CN = (CN ∪ CM) \ Cp , where CM is from the last interaction,
4. update CU = (CU ∪ CE) \ Cr , where CE is from the last interaction,
5. Set up CM = CE = ∅,
6. verify whether the request r is a security consequence of the policy access PAand

presented credentials CP , namely PA ∪H ∪ CP |= r and PA ∪H ∪ CP 6|= ⊥,
7. if the check succeeds then return grant else

(a) compute the set of disclosable credentials CD ={c | PD ∪ CP |= c}\ (CN ∪CP),
(b) use abduction to find a minimal set of missing credentials CM ⊆ CD such that

both PA ∪H ∪ CP ∪ CM |= r and PA ∪H ∪ CP ∪ CM 6|= ⊥ ,
(c) if a set CM exists then return < ask(CM), revoke(CE) > else

i. use abduction to find a minimal set of missing credentials CM ⊆ (CD∪CP)
such that PA ∪H∪ CM |= r, PA ∪H ∪ CM 6|= ⊥ and CU ∩ (CP \ CM) = ∅,

ii. if no set CM exists then return deny else
iii. compute CE = CP \ CM and CM = CM \ CP ,
iv. return < ask(CM), revoke(CE) > and iterate.

Fig. 5. Interactive Access Control Algorithm for Stateful Autonomic Services

credentials asked in the last interaction minus the ones currently revoked. Step
5 prepares the two sets CM and CE for the interaction output.

Steps 6, 7, 7a, 7b and 7c have the same explanation as the respective ones
in Figure 4. If a set of missing credentials was not found in step 7b then we run
the abduction process again (step 7(c)i) but over the extended set of disclosable
credentials and active credentials CD ∪ CP searching for a solution for r that
preserves consistency in PA and unlocks r. The last requirement in the step is
used to filter out those solutions that have been partially refused to be revoked.

Step 7(c)i indicates that if a set CM exists then definitely there are “wrong”
credentials among those in CP that ban the client to get a solution for r (in step
7b). If no such set then the client is denied because he does not have enough
privileges to disclose more credentials to obtain the service r (step 7(c)ii).

Step 7(c)iii computes the sets of excessing and missing credentials CE and
CM. The motivation behind CE is that the set difference of active credentials
minus just computed CM certainly contains the credentials that ban the client
to get a solution for r.

At this point there two main issues concerning the set CE : (i) the system
may restart from scratch asking the client to revoke all his active credentials,
i.e. CE = CP , (ii) the system may ask the client to present credentials that have
been already asked for revokation in past interactions.

Remark 2. Step 7(c)iii looks the opposite of abduction: rather than adding
new information to derive more things (the request), we drop information to



E Pluribus Unum 187

derive less things (the inconsistency). One can show that the two tasks are
equivalent.

6 Life Is Complicated: Two-Party Negotiation

So far deduction helps us to infer whether a service request is granted by the
partner’s access policy and the client’s set of credentials. In the case of fail-
ure, abduction infers what is missing so that the client can still get the desired
service.

Example 7. When the senior researcher received the counter request to present
his seniorResearcher certificate in order to get access he may not want to reveal
his role if he is not sure that he talks with a University of Trento’s server.

We should allow him to request the system to show a certificate. The system, in
its turn, may have policy saying that such certificates are disclosed only to enti-
ties coming from an authorized network, e.g., authNetwork (∗, ∗.fraunhofer.de).

The next step is how to establish and automate a two-party negotiation
process using the inference capabilities on both sides. For that purpose we need
to extend each of the party’s policies:

– a policy for access to own resources PAR on the basis of foreign credentials,
– a policy for access to own credentials PAC on the basis of foreign credentials,
– a policy for the disclosure of the need of missing foreign credentials PD.

Client and the server just have to run the same negotiation protocol:

1. The client, Alice, sends a service request r and (optionally) a set of creden-
tials Cp to the server, Bob.

2. Then Bob looks at r and if it is a request for a service he calls the interactive
access control algorithm in Figure 4 with his policies for access and disclosure
of resources < PAR,PD >.

3. If r is a request for a credential then he calls the same algorithm with his
respective policies for access and disclosure of credentials < PAC ,PD >.

4. In the case of computed missing credentials CM, he transforms that into
counter-requests for credentials and waits until receives all responses. At
this point Bob acts as a client, requesting Alice the set of credentials CM.
Alice will run the same protocol swapping roles.

5. When Bob’s main process receives all responses it checks whether the missing
credentials have been supplied by Alice.

6. If CM was not reached, Bob restarts the loop and consults the interactive
access control algorithm for a new decision.

7. When a final decision is taken, the response (grant/deny) is sent to Alice.

The protocol can be run on both sides so that they can communicate and
negotiate the missing credentials until enough trust is established and the service
is granted or the negotiation failed and the process is terminated.



188 H. Koshutanski and F. Massacci

7 Induction: Finding the Rules

The work for inductive logic programming [14] has been most evolved in the
field of machine learning. Inductive logic programming systems (ILP) construct
concept definitions from examples and a logical domain theory.

Induction may be an extremnely valuable tool for autonomic nodes, because
complete and consistent access policies may be difficult to write. So it might be
weel the case that a node has only a partial policy, and some additional set of
examples of access that one desired to permit or forbid. Then the node should
be able, by generalizing from the examples to derive a policy that matched the
given examples and is also asble to answer other similar queries.

So an autonomic node could be provided with background police PB , some
sample granted requests for services R+ and denied requests R− and as a result
it should be able to constructs a tentative access policy PHA. Here R+, R− are
sets of ground facts and PB and PHA are logic programs. The conditions for
construction of PHA are:

Necessity: PB 6|= R+,
Sufficiency: PB ∧ PHA |= E+,
Weak consistency: PB ∧ PHA 6|= ⊥,
Strong consistency: PB ∧ PHA ∧ E− 6|= ⊥.

A number of algorithms can be used for determining the construction of PHA

based on ILP (see e.g. [14]) and the identification of the most appropriate for
autonomic communication policies is the subject of future work.

8 Implementation

We have implemented a system for access control for abduction and deduction us-
ing protocols over web services, a front-end to a state-of-the-art inference engine
and integrated it with a system for PMI (privilege management infrastructure).

For our implementation, Collaxa1 is used as a main manager of Web Services
Business Processes (on the AuthorizationServer side).

PolicyEvaluator is a Java module that acts as a wrapper for the DLV system2

(a disjunctive datalog system with negations and constraints) and implements
our interactive algorithm for stateless autonomic nodes (Fig. 4). For deductive
computations we use the disjunctive datalog front-end (the default one) while
for abductive computations, the diagnosis front-end.

The current system processes credentials at an high level: defines what can
be inferred and what is missing from a partner’s access policy and a user’s
set of credentials. For the actual distributed management of credentials at lower
levels (namely actual cryptographic verification of credentials) we decided to use

1 Collaxa BPEL Server (v2.0 rc3) – www.collaxa.com
2 DLV System (r. 2003-05-16) – www.dlvsystem.com



E Pluribus Unum 189

PERMIS infrastructure [18] because it incorporates and deals entirely with X.509
Identity and Attribute Certificates. It allows for creating, allocating, storing and
validating such certificates. Since PERMIS conforms to well-defined standards
we can easily interoperate with the other entities (partners) in the network.

9 The Challenges Ahead

So far we have presented a logical framework and a proof-of-concept implemen-
tation for reasoning about access control for autonomic communication based on
interaction for supplying missing credentials or for revoking “wrong” credentials.
We have discussed the different formal reasoning services – deduction, abduction,
and induction, with a special emphasis of the first two. We have also show how
the model can deal with stateful access to services and two party negotiation.

Yet, a number of major challenges remains:

Complexity Characterization: abduction engines such as DLV are rather ef-
fective but unfortunately general algorithms for abduction are inefficient3.
Our problems are at the same time more specialized (e.g. credentials are oc-
curring only positively in the rules) and more general (we have hierarchies of
roles so subset or cardinality minimality does not really apply). So capturing
the exact computational complexity of the problem may be far from trivial.

Approximation vs Language Restriction: even if the problem is hard in
the general case, we might have suitable syntactic restrictions that allow for
a polynomial evaluation. In other cases, we may be able to find out anytime
algorithms that gives an approximate answer (not really the minimal one
but close to it).

Reputation Management: so far we have assumed that declining or present-
ing a credential has no impact on the reputation of nodes. Research on
algorithms and logics for secure reputation is still in the early stage but its
integration with interactive access control might have a significant impact.

Negotiatation Strategy Analysis: which is the impact of the negotiation
strategy on the effectiveness, completeness, privacy protection, immunity
from DoS attacks of interactive access control? So far only the complete-
ness of the procedure is settled and more sophisticated strategies, taking
into account the value of credentials that are disclosed could lead to many
interesting results relevant for the practical deployment of the framework.

Policy Compilation: this is likely the topic with major impact on industry.
All policies (either in networking or security) are either interpreted or hard-
wired in the application. In contrast, we would need a way to “compile”
the policy and the policy enforcement engine into machine languages so
that autonomic nodes can quickly react to the requests and yet gives us
the flexibility of policies: update a policy simply means recompiling and
redeploying.

3 They lay at the secon level of the polynomial hierarchy, i.e. harder than NP.



190 H. Koshutanski and F. Massacci

References

1. Sloman, M., Lupu, E.: Policy specification for programmable networks. In: 1st
Inter. Working Conference on Active Networks, Springer-Verlag (1999) 73–84

2. Smirnov, M.: Rule-based systems security model. In: Proceedings of the Second
International Workshop on Mathematical Methods, Models, and Architectures for
Computer Network Security (MMM-ACNS), Springer (2003) 135–146

3. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder policy specification
language. In: Proceedings of the International Workshop on Policies for Distributed
Systems and Networks (POLICY), Springer-Verlag (2001) 18–38

4. Weeks, S.: Understanding trust management systems. In: IEEE Symposium on
Security and Privacy (SS&P), IEEE Press (2001)

5. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B.M., Ylonen, T.: SPKI
Certificate Theory. (1999) IETF RFC 2693.

6. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach to
distributed authorization. ACM TISSEC 6 (2003) 128–171

7. Atluri, V., Chun, S.A., Mazzoleni, P.: A Chinese wall security model for decen-
tralized workflow systems. In: Proceedings of the 8th ACM CCS. (2001) 48–57

8. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of autho-
rization constraints in workflow management systems. ACM TISSEC 2 (1999)
65–104

9. Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases 3 (1995) 119–153

10. Kang, M.H., Park, J.S., Froscher, J.N.: Access control mechanisms for inter-
organizational workflow. In: 6th ACM SACMAT. (2001) 66–74

11. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reasoning
about access control models. In: 6th ACM SACMAT. (2001) 41–52

12. Bonatti, P., Samarati, P.: A unified framework for regulating access and informa-
tion release on the web. Journal of Computer Security 10 (2002) 241–272

13. Shanahan, M.: Prediction is deduction but explanation is abduction. In: Proceed-
ings of IJCAI ’89, Morgan Kaufmann (1989) 1055–1060

14. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
JLP 19/20 (1994) 629–679

15. Apt, K.: Logic programming. In van Leeuwen, J., ed.: Handbook of Theoretical
Computer Science. Elsevier (1990)

16. De Capitani di Vimercati, S., Samarati, P.: Access control: Policies, models, and
mechanism. In Focardi, R., Gorrieri, F., eds.: Foundations of Security Analysis and
Design - Tutorial Lectures. Volume 2171 of LNCS. Springer Verlag Press (2001)

17. Koshutanski, H., Massacci, F.: Interactive access control for Web Services. In:
19th IFIP Information Security Conference (SEC), Kluwer Press (2004) 151–166

18. Chadwick, D.W., Otenko, A.: The PERMIS X.509 role-based privilege manage-
ment infrastructure. In: Seventh ACM SACMAT. (2002) 135–140


	Introduction
	Access Control with Security Policies
	A Running Example
	Deduction vs Abduction
	Stateful AC: Missing and Excessing Credentials
	Life Is Complicated: Two-Party Negotiation
	Induction: Finding the Rules
	Implementation
	The Challenges Ahead

