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Abstract

The OKKAM project aims at enabling the Web of Entities, a global digital space for publishing
and managing information about entities. The project provides a scalable and sustainable infras-
tructure, called the Entity Name System (ENS), for the systematic reuse of global and unique
entity identifiers. The ENS provides a collection of core services supporting entity identifiers
pervasive reuse. The ENS is required to be reliable data intensive load-balancing cluster system
for service provisioning.
Given the project’s successful outcome, this paper presents the ENS security framework and
how it enables scalable secure service provisioning underpinned by trust negotiation based ac-
cess control. A detailed security performance evaluation is given, with supporting conclusions of
scalable and efficient security design and implementation.

Keywords: Access control, trust negotiation, web services security, security proxy, security
evaluation, load-balancing cluster.

1. Introduction

The OKKAM project1 aims at enabling the Web of Entities, a global digital space for pub-
lishing and managing information about entities, where each entity is uniquely identified, and
links between entities can be explicitly specified and exploited in a variety of scenarios. Com-
pared to the WWW, the main differences are that the domain of entities is extended beyond
the realm of digital resources to include objects in other realms such as products, organizations,
associations, countries, events, publications, hotels or people; and that links between entities are
extended beyond hyperlinks to include virtually any type of relationship [1].

The concept of the “Internet of Things”2 (IoT), widely referred to as a world-wide network
of interconnected objects, shares several similarities with the concept of the Web of Entities.
Compared to the IoT, the Web of Entities is a step towards the realization of a IoT where the
domain of entities and links between them are extended to allow any type of virtual, physical or
digital relations.

To make this happen, the Web of Entities must trigger (as the WWW did) what economists
call the network externality effect, and this requires at least three pillars to be in place:
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• a suitable infrastructure which can support the open and sustainable growth of the Web of
Entities – calling for a security architecture design enabling future infrastructure evolution;

• a critical mass of new entity-aware content and data accessible to a very large number of
users in a relatively short time period – calling for efficient security access to core services;

• a collection of exemplary and high impact applications, which can prove to the key players
in ICT that investing in the Web of Entities is worthwhile – calling for appropriate security
engineering for users and application developers.

The OKKAM project presents a strategy and an effective work plan to build the three
pillars of this Web of Entities, not only from a technical point of view, but also from a social,
organizational and business-oriented perspective. The project provides a scalable and sustainable
infrastructure, called the Entity Name System (ENS), for systematic reuse of global and unique
entity identifiers [2, 1, 3]. The ENS stores identifiers for entities and provides a collection of core
services needed to support their pervasive reuse.

From a technical perspective, the ENS is required to be a highly reliable data intensive load-
balancing cluster system for service provisioning. As such, the ENS is an excellent target to
demonstrate a solution for providing security and trust aspects of service usage. Taking that
into account, the paper reports the experience, going from the design of the security architecture
down to its implementation, and describes security solutions developed as the final outcome of
the project.

The ENS offers a collection of core services accessible via Web Services technologies. Due
to the nature of the ENS content (identifiers of entities) and its service to the general public
with decentralized service usage, there is a strong legal requirement for controlling who creates,
modifies, or administers entities’ profiles in the ENS. On the other hand, there is an important
user privacy requirement of not only controlling who uses the ENS but also ensuring privacy
of users’ contributions, i.e., no third party (other than a user and the ENS) should learn by
itself who creates, modifies, or administers the ENS, i.e. confidentiality and authenticity of ENS
service access.

Nowadays, there are a number of standards addressing generic security and trust aspects
for Web Services (known as WS-*), which calls for a specific security design deploying those
standards into a comprehensive security framework, especially tailored to OKKAM, with easy
to use security mechanisms for practical adoption.

Trust, security and privacy approach, undertaken in OKKAM, is mainly determined by the
open and decentralized interactions by a community of users. The public nature of OKKAM
is that it serves the public and, at the same time, is open to contribution by the public. The
decentralized style of OKKAM is determined by the fact that the ENS stays “hidden” to end
users’ interactions. End users interact with the ENS via OKKAM Web front-ends.

Secure and trusted usage of the core ENS services is driven by access control based on digital
certificates attesting to users’ privileges (credentials). Credentials themselves convey sensitive
information and may become subject to unauthorized misused and disclosure. Recent years have
seen the emergence of a concept called trust negotiation [4, 5]. It is a policy-based technique that
provides clients with the right to protect their own credentials and to negotiate with servers access
to those credentials. Trust negotiation preserves peer’s privacy by controlling what credentials
are disclosed to what entities under given conditions. Thus, trust negotiation allows users and
the ENS to mutually establish confidence in each other by requesting credentials until sufficient
trust is established to grant service access.

Access control is driven by a trust negotiation mechanism triggered automatically whenever
a client needs more access rights to use a service. The goal is to provide flexible and efficient
access control enforcement that fits in well with the OKKAM aim of providing services to an
open/public community. The negotiation approach also facilitates future evolution of ENSs in

2



terms of security requirements organizations and companies may have over time, and uniform
automated enforcement of those with user-side applications.

The main achievements of the security framework are: (i) Design of a trust negotiation mech-
anism meeting the requirements of the ENS in terms of performance and scalability. The trust
negotiation mechanism improves on the work of [6, 7] achieving server-side stateless negotiation
for true replication and distributed session management of policy decision point (PDP) com-
ponent within a cluster of machines. (ii) Development of security proxy leveraging secure and
trusted communication between user applications and the ENS. The security proxy encapsulates
automated trust negotiation functionalities with the Web services security technologies provid-
ing high-level security abstraction. (iii) A detailed security performance evaluation supporting
conclusions of scalable and efficient security process design and implementation.

The rest of the paper is organized as following. Section 2 presents related work on access
control systems. Section 3 overviews the ENS architecture and main components. Section 4
presents the security requirements defined at the start of the project. Section 5 presents the
design decisions underpinning the security architecture and what motivates them. Section 6
presents the underlying negotiation model of access control. Section 7 discusses implementation
details of the security architecture, interactions, and deployment. Section 8 reports the results
of performed security evaluation. Section 9 discusses security management aspects of the system
and its robustness analysis. Section 10 concludes the paper and outlines future work. Appendix
A presents details of the designed OKKAM certification and attribute management model.

2. Related Work

We believe that an important aspect of an authorization system for any open environment is
the incorporation of a trust negotiation capability. The focus of this paper is on the development
of an authorization system with integrated trust negotiation capability by emphasizing on its
architectural design and negotiation enforcement aspects meeting the security requirements. One
of the main architectural features of distributed access control systems is splitting the server role
into two: an application server and an authorization server, to decouple access control logic from
application logic and possibly distribute/replicate the access control component.

One of the earliest papers on providing a general framework for expressing authorizations
was proposed by Woo and Lam [8]. The main component of the system is an authorization
server that performs authorization on behalf of an application server. An application server
elects an authorization server in order to offload its access control policy for further evaluation.
The authorization server takes the final access decision and hands out authorization certificates
to authorized clients. These certificates are to be forwarded by clients to the application server
together with their requests.

Akenti [9] is an authorization systems based on digital certificates: X.509 user identity certifi-
cates for authenticating users; use-condition certificates for specifying the conditions that must
be met by a user to gain access to a resource; attribute certificates, stored on trusted servers,
attesting that a user possesses specific attributes.

Adage system [10] offers centralized security administration and modular authorization. An
application server communicates with an authorization server for obtaining authorization deci-
sions. The authorization server in turn communicates with identity and attribute servers to get
additional information for a client. In the process of decision making the authorization server
determines whether the user needs some roles to be activated and attempts to activate them.

PERMIS [11] adopts X.509 certificate standard of identity and attribute certificates. Archi-
tecturally, it consists of two main subsystems: the privilege allocation and the privilege veri-
fication subsystem. The former is responsible for assigning privileges to users – issuing X.509
role assignment attribute certificates, as well as, signing and issuing a service provider’s access
policy as an X.509 attribute certificate. The privilege allocation subsystem stores its attribute
certificates in LDAP directory for subsequent use by the privilege verification subsystem. The
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privilege verification subsystem authenticates and authorizes a remote client as well as takes
access decisions on target services.

The access decision process of Akenti, Adage and PERMIS systems is based on identity,
authorization, and attribute data stored and conveyed in certificates dispersed over the Internet
(e.g., LDAP directories, Web servers). The authorization engine has to gather and verify the
certificates needed for the user’s request and then evaluate them to compute an access decision.

In our approach we also split the ENS application logic from the underlying security logic
by means of the security proxy. We replicate the security proxy throughout the replication of
ENS nodes in a cluster to achieve scalability of security services. However, by design, our system
does not look on its own for available client’s certificates when taking a decision but allows users
control what credentials they are willing to use for service access via an automated negotiation
process.

2.1. Trust Negotiation Based Access Control Systems
Trust negotiation [12, 13] is a promising technique that has been proposed for authorization

and access control in open environments where any entity could be malicious. Trust negotiation
allows authorization of peers which have incomplete knowledge about each other, belong to dif-
ferent administrative domains, and may never have interacted before. Trust negotiation implies
authorization based on bilateral exchange of credentials. The sequence of credential exchange
during a negotiation process is controlled by negotiation strategies. One can define a variety of
negotiation strategies and privacy settings [14, 15, 16, 17] depending on credential sensitivity,
on familiarity with the remote opponent or domain, type of resources being accessed, and so on.

Recently, only a few policy-driven trust negotiation approaches have been successfully de-
veloped as authorization systems, such as TrustBuilder2 [18], Protune [19], and Trust-X [20].
Traust authorization service [21] incorporates into GridFTP service a trust negotiation func-
tionality using existing negotiation mechanisms and protocols such as those of TrustBuilder and
Trust-X.

An approach [22] proposes a fine-grained Grid monitoring system integrated with the iAccess
negotiation system to enable comprehensive protection of Grid computational resources from
the threat represented by applications executed on behalf of remote Grid users.

Instead of using centralized trust negotiation service, the model proposed in [23] deploys
PeerTrust [24] negotiation capabilities into the Grid service functionality. A policy decision point
(PDP) of Globus authorization service is extended by an intercepter of service requests. The
intercepter grants access to a service if a negotiation process has been successfully completed.
Negotiations are asynchronous and implemented through WS-Notification mechanisms. The
implementation changes the service WSDL file and exploits state-full resources defined by WS-
Resource framework.

The focus of this work is on the development of an authorization system with improved
trust negotiation capability of [6, 7]. We refer the reader to [6] for a detailed comparison of the
underlying negotiation approach with the state-of-the art. Our solution implements synchronous
client-initiated negotiations where the server agent is free from negotiation state maintenance.
Our argumentation is that stateless server-side negotiation enhances system robustness against
potential denial of service attacks with respect to the stateful negotiation approaches (see also
Section 9).

The ENS security architecture is designed to handle multiple trust negotiations for decision
making by using distributed access control session data. The new negotiation design allows for
replication of the PDP service on several machines within a cluster for a scalable decision making
process. In this way, if a machine where a negotiation process started is not capable of handling
more computations, the load balancer will redirect the coming steps of the process to another
node in the cluster where the negotiation process can continue smoothly without repeating the
steps previously taken. This is an important advancement towards a flexible access control
process for a distributed (grid) computing scenario, where an access control process dynamically
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(a) ENS Multi-core Cluster Architecture (b) ENS Single-core Interactions View

Figure 1: ENS V2 Service Production Platform [25]

on the fly spans/continues from one computing node to another one, without intercepting the
access control process.

One could also extend the security proxy component to fetch relevant certificates from ded-
icated repositories on the Web which are actually necessary for a current negotiation step. In
that way, users run the security proxy locally and configure it to obtain user certificates from
remote LDAP repositories where users (prefer to) keep their credentials.

3. ENS Architecture Overview

We will first overview the ENS architecture and main components in order to better introduce
security requirements and the ENS design decisions. The ENS system has been defined to provide
core services with a high degree of reliability. For that reason, a dedicated high-reliability cluster
architecture has been designed with its respective database technology addressing reliable storage
and provision of ENS data [25, 26, 2].

Figure 1 shows the ENS as (a) a multi-core cluster view and (b) interaction of ENS with
external application as a single-core view. The ENS Core cluster aims at providing high-level
processing of the core ENS services by replicating ENS core functionalities on multiple machines
(in a local area network) all sitting behind a load balancer.

The ENS core components illustrated in Figure 1(b) are briefly described below:

• Storage component: stores IDs with the corresponding profiles and provides rich indexes
for efficient retrieval.

• Matching component: uses a library of methods to match any arbitrary description of an
entity to its ID (if any) in the ENS repository.

• Lifecycle component: controls the evolution of the ENS repository through time and space.
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• Access Manager: responsible for proper access control of function calls and dispatching of
internal messages from one layer of the core to another.

• OKKAM Web Services: provides general APIs allowing authorized users of the application
to access and interact with the ENS.

• ENS-enabled applications: any application which can use the interfaces to interact with
the ENS.

An application perspective means that an application communicates with the cluster as if
it were communicating with a single-server machine (Figure 1(b)). An important factor (and
architectural decision) here is that the load balancer does session-less dispatching to any of the
cores behind. This decision ensures availability and scalability of the ENS services and defines
an important requirement for the design of the security architecture.

A single core behind the load balancer has a set of Web Services APIs used by external
applications to access the ENS. There is an explicit layer in the single-core view architecture,
called Access Manager, responsible for properly dispatching function calls (behind the APIs)
and internal messages from one layer of the core to another. We refer the reader to [25, 26]
for further details on the ENS architecture and storage layer design features, and to [2, 27] for
recent results on the ENS functional aspects and scalability performance. The important aspect
here is that security and trust solutions have been placed at the level of the Access Manager as
the main layer where all communications both external and internal between different layers are
processed.

4. Security Requirements

There are several security requirements defined at the start of the project that a security solu-
tion should conform to. We classify them into security architecture design, software engineering,
and performance-driven requirements.

There are two main design requirements behind the security architecture:

• Define a “backbone” of secure and trusted communications with ENS so that any evolution
of ENS and future decision making are seamlessly supported without any major change of
the security architecture. This necessity is underlined by a general OKKAM design goal
of making the ENS flexible and evolvable over time.

• Adopt well-known and widely used security and trust standards as building components of
the security infrastructure, and employ maximum possible portion of each standard. Thus,
maintaining important balance between targeting the best possible solutions beyond state-
of-the-art, which require a bigger deployment effort, and achieving interoperable standards-
based communications with the ENS.

It has been defined the need of core security requirements of confidentiality, integrity, authen-
tication and access control that external components should implement for all communications
with the ENS. From a software engineering point of view, a set of security solutions covering the
above requirements should be properly integrated into OKKAM-enabled applications during the
application development process.

However, it is important to note that just providing security solutions to OKKAM-enabled
applications is not satisfactory as it still leaves in the hands of the application developer the
burden of understanding what a security requirement means in a given context and if that
security requirement is exactly what a developer needs for a given application or a combination
of them. We believe that an application developer may have difficulties in understanding how to
integrate core security solutions (with each other) to achieve correct security for his applications,
unless the developer has a good background in security.
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For that reason, it has been decided to analyze the necessities of OKKAM applications further
and provide the most needed security aspects as an integrated security solution (of core security
requirements) to use as a high-level security property for application developers, ENS developers,
and end users. In what follows we list some of the requirements of OKKAM related to software
engineering of OKKAM:

• Developers of OKKAM-enabled applications should not need to have specific knowledge
of underlying security properties in order to enable secure communications between their
applications and the ENS,

• Developers of the ENS system (its functional aspects) should not be required to know the
internal components of available security solutions in order to protect ENS services and to
apply those security solutions inside the service development of the ENS,

• The design of a security solution that provides the highest possible abstraction of security
aspects to facilitate easy and smooth integration on the application level, thus addressing
ENSs future evolution.

There is a legal requirement to trace who creates and manages ENS entities. This requirement
has two aspects that need to be addressed: trace who creates and manages ENS entities by
direct interactions with the ENS services; and trace those end users who create and manage
ENS entities via indirect (third-party) service interactions with the core ENS services. This last
aspect is defined by the general project goal of allowing third party community services to offer
meta services to end users based on core ENS functionalities.

The ENS requires an efficient security process for ENS core services in order to cope with
expected impact and wide adoption. There are two main security-related performance require-
ments pursued regarding usability:

• A reasonable (user’s perception) delay caused by mutual authentication (initial handshake)
between a user application and the ENS should be no more than a second.

• A reasonable security-related overhead once the mutual authentication is completed should
not exceed a few hundreds of a second per service access.

The first performance requirement regards the aspect of providing accessible for ENS nature
bilateral authentication process leveraging subsequent Web service communications. The second
requirement concerns two ENS use cases: preserving as much as possibly ENS capacity for
handling search queries per second over a security channel, and providing as efficiently as possible
bulk import access over a security channel. The bulk import setting reflects the efficiency of
automated tools used for importing large data sets of entities into the ENS repository.

5. Security Architecture Design Decisions

There are several design decisions taken about the security architecture based on the re-
quirements explained above. This section shows the motivation and justification of the decisions
taken.

Figure 2 shows a high-level view of ENS community interactions. There are several actors that
interact with the ENS. Web services applications represent all third-party information systems
that integrate ENS services into their business logic. In this category we also consider bulk import
tools developed by the project consortium, as well as, private ENS nodes which serve OKKAM
services entirely in a private company-specific domain of entities, for example, in private company
products. There are ENS-empowered tools, developed by the project consortium, dedicated to
help end users using the ENS from within other applications (such as MS Word plug-in or Firefox
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Figure 2: OKKAM Security Architecture and Communications

plug-in etc.). Some of the tools in this category do not have dedicated capacity of processing
any security settings.

The third category of actors represents third party ENS community services which pro-
vide ENS-based services to end users. Some dedicated community services are provided by the
OKKAM consortium such as the Web front-end toolkit which facilitates end users with easy and
intuitive management of ENS content.

Another important aspect of the security architecture is the fact that the ENS is designed
to work as a high-availability cluster with several ENS node replicas behind a load balancer
component. This aspect of node replication has an important influence on the choice of security
standards and on the design of the access control decision and enforcement components.

WS-Security standard3 defines end-to-end interoperable message content integrity and con-
fidentiality when messages pass through intermediary nodes before reaching their destination
end-point. This aspect fits in well with the choice of having a load balancer allow application-
to-ENS-node-replica secure channel establishment as shown in Figure 2. In such cases, the load
balancer is free of handling secure channel cryptographic operations, as it would be in the case
of TLS connections, instead, each ENS node handles the security operations.

5.1. Certificate-based Security
Security and trust aspects of the OKKAM infrastructure focus on controlling access to infor-

mation stored on the ENS. The security architecture is based on the advanced use of certificate
technologies with the strategic goal of fostering the creation of a wide community of users by
providing them with the full benefits of certificate technologies such as the capability of establish-
ing trusted and secure communications with ENS services, confidential communications among
end users, and third party ENS service providers, as well as, document authentication based on
digital signatures.

Trust in the ENS community is based on certificate authorities that qualify the ENS, third
party service providers and end users by means of digital identity and attribute certificates
compliant with X.509 [28] standard. The architecture allows scalable trust establishment in a
distributed environment by means of common trusted OKKAM certificate authorities. Appendix
A presents details of the designed OKKAM Public Key Infrastructure, certificate authorities and
attribute management.

3Web Services Security Specifications at http://www.oasis-open.org/specs
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5.2. Proxy-driven Security Communications
Communications with ENS cluster are based on Web Services technologies. However, securing

Web services interactions and building a scalable authentication and access control process is a
non-trivial task, which involves the usage of several web services security standards and proper
synergy of them. In addition, certificate management and scalable negotiation-based access
control add another layer of complexity in communications with the ENS.

To aid users, developers and third-party service providers a security proxy component has
been designed that abstracts all necessary security management and technological aspects from
application-level development. Figure 2 shows how the proxy component enables client-side
secure and trusted communications with the ENS, and how the architecture realizes scalable
security processes by deploying the proxy counter part in any ENS core in a cluster.

The proxy component enables user-side uniform management of security, trust and privacy
settings of communications with both the ENS and private ENS nodes. It also enables private
(proprietary) ENS nodes to seamlessly establish secure and trusted communications with the
public ENS. The latter is defined in the context of a query forwarding functionality where a
private ENS node may connect to the public ENS for complementary information on given
entities from the public space.

5.3. ENS Security Mechanism
The main steps taken by the security mechanism upon a service request to the ENS are as

follows:

1. Establishment of a confidential channel between client proxy and the ENS (via asymmetric
crypto operations).

2. Trust establishment on more access rights (when necessary) to access a requested ser-
vice. Trust negotiation over the confidential channel (symmetric message encryption with
asymmetric crypto operations on certificate verification).

3. Any subsequent access to ENS APIs is over the confidential channel of step 1 (symmetric
message encryption).

An important aspect of the ENS security design is the dynamic access control enforcement
when accessing ENS services. This means that within a given security session if a user needs
more access rights for a given service, a trust negotiation process is triggered on the fly between
the user-side proxy and the ENS (transparently for the application-level), and upon successful
agreement the given operation service is automatically invoked. Steps 1 and 2 of ENS security
take place automatically by a means of a priori installed certificates. The ENS plays the role of
Policy Decision Point (PDP) for authorization.

The ENS security solution takes advantage of ENS being a high-reliability cluster and builds
all security processing as scalable as the ENS itself by replicating security services throughout
the replication of ENS core services.

5.4. ENS Security Mechanism vs Single Sign-on Mechanism
We will motivate the design decisions on the ENS security mechanism derived from analysis

of the widely used single sign-on (SSO) mechanism [29]4. SSO is a system design approach to
share user authentication between different administrative domains. There is a central identity
provider (IdP) domain that authenticates users so that they can smoothly access all the services
of the providers (SPs) sharing trust with that IdP. There is a circle of trust formed between
service providers, which require all of them to have similar levels of trust. A user presents
its username/password only once per session, and for the duration of the session the user is

4The main SSO steps are taken from the SAML specification of Web browser single sign-on schema [29].
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Features Single Sign-on ENS Security
Performance of user
authentication

Degrades with increasing number of
registered users due to underlying
database lookups for verification.

Independent to number of users and loca-
tion as the verification is done at the level
of certificates (without database lookup).

Scalability of multi-
user authentication

Requires additional infrastructure in-
vestment to enable scalable authentica-
tion for multi-user access.

Inherits scalability of ENS multi-cluster
architecture (security services replicated
on any ENS core).

Availability of au-
thentication service

Requires additional infrastructure in-
vestment to enable authentication ser-
vice availability.

Inherits availability of ENS services (se-
curity services run on any ENS core).

Usability of authen-
tication service

Good usability level when different ad-
ministrative domains federate for ser-
vice access.

Good usability level for OKKAM pur-
poses: decentralized authentication and
minimized username/password manage-
ment.

Users trust in se-
curity technologies
adopted

SSO constitutes a good choice for dis-
tributed systems requiring uniform au-
thentication scheme and strong trust re-
lationships between federated sites.

Certificates provide good security level of
users’ data; minimize username/password
management; provide good perception for
decentralized authentication and autho-
rization.
Proxy-based security gives good balance
of simplicity of use and security level
achieved; gives perception of well-thought
out security design for better integration
(adoption) of ENS in other information
systems.

Independency of ex-
ternal security re-
sources

Availability, performance and manage-
ability depend on external IdP-specific
authentication resources.

Availability, performance and manage-
ability depend on ENS own and well-
controlled security resources (own CAs,
user authentication, proper certificate
generation, security policies, etc).

Cryptographic oper-
ations used

– Asymmetric for establishing confiden-
tial channel (e.g., TLS) for users pre-
senting credentials to IdP.
– Asymmetric for establishing confiden-
tial channel (e.g., TLS) for user present-
ing IdP’s authentication token to SP,
and for SP validating the token.
– Symmetric encryption for subsequent
interactions between users and SPs.

– Asymmetric for establishing confidential
channel (mutual certificate security).
– Asymmetric for trust establishment
phase (certificate verification and valida-
tion) run over confidential channel.
– Symmetric encryption for subsequent
interactions with the ENS (WS-Security
for SOAP message encryption).

Certificate revoca-
tion

SSO proper management is dependent
on certificate revocation. For example,
HTTPS channels require a user-side
certificate revocation check on servers’
certificates.

Certificate revocation status required on
both sides client- and server-side when es-
tablishing confidential channel, and dur-
ing the trust negotiation process.

Table 1: Security features and comparison with SSO and ENS security

authenticated for all SPs by presenting the obtained security token from the IdP (without re-
entering its credentials).

The main steps of the SSO mechanism upon receiving the very first service request by a user:

1. A user is forwarded (by a SP) to the respective IdP of the circle of trust.
2. Establishment of confidential channel between the user and the IdP domain (via asymmet-

ric crypto operations, such as HTTPS).
3. The user presents their username/password credentials for authenticating to the IdP. The

10



IdP generates an authentication token (e.g., SAML assertion) and digitally signs it.
4. The IdP passes the user back to the SP’s domain with the authentication assertion. There is

an intermediary step where the user establishes a secure channel with the SP for supplying
the authentication token (normally HTTPS), otherwise the user should prove to the SP he
is the owner of the token (involving some form of cryptographic operations).

5. Any subsequent access to the SP’s domain is performed either on a public or on a confi-
dential channel (symmetric message encryption). In the context of ENS this is necessary
to ensure confidentially and privacy of users’ contributions.

Table 1 summarizes the most relevant security features of the project and how they contrast
with SSO and the ENS security mechanism. Regarding SSO performance, we refer to the results
of DAMe project. One of the project goals is to realize a unified SSO framework on top of the
eduroam5 infrastructure. In a project deliverable [30, page 46] the authors report that for their
SSO application scenario the IdP takes on average 0.5 of a second to validate if a user is among a
legal set of users and to generate a digitally signed authentication assertion (a SAML assertion).
There are also other experimental results such as, an authentication time can reach 22 seconds
in the simplest case and 32 seconds in the extended authentication mode. The evaluation results
show that SSO performance depends heavily on the number of registered users and the scalability
of IdP’s SSO services.

6. Trust Negotiation Based Access Control

The trust negotiation mechanism developed in the OKKAM security framework improves on
the work done in [6, 7] in order to cope with the needs of the ENS. The approach in [6] proposes
an interactive access control model (IAC) where a server interacts with a client requesting from
him missing credentials necessary to grant the service. The client, in turn, checks if it has the
requested credentials and sends a response back to the server. The server re-evaluates an access
policy to verify if the returned set of credentials grants access to the object. In case the client
does not have all the credentials from the first round, the server re-computes a new set of missing
credentials and asks for them from the client. Thus, a client and a server interact until either
the client presents a set of credentials satisfying the server’s access policy or there is no missing
set to be asked for from the client and the server denies access.

The work in [7] defines an extension to IAC where a client entity is also empowered by having
its own IAC reasoning so that whenever a server asks a client for a set of missing credentials
the client computes, according to its own credential control policy, what missing credentials the
server has to present to see the client’s credentials. The extension defines a negotiation protocol,
on top of the IAC model, allowing a client and a server to interact until an agreement is reached
and the server provides access to the requested object, or one of the parties denies the negotiation
process; failing to provide the required credentials.

6.1. Trust Negotiation Design Decisions
The negotiation protocol has been redesigned and substantially improved to meet the ENS

system requirements allowing decentralized computing of negotiation steps within a cluster of
machines. Looking at the ENS architecture, there are three main aspects to be addressed:
(i) integration of the trust negotiation protocol with Web Services security standards, (ii) en-
able “passive” server-side trust negotiation process due to client-side firewall restrictions and
inability to have direct server-to-client requests, (iii) allow session-free and cryptographic-free
load balancer of the ENS cluster thus achieving truly functional load balancing and distributed
computing within the cluster (of machines).

5http://www.eduroam.org
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InteractiveAccessControlStepwise(r,Cp){
1. check if PA and Cp entail r,
2. if the check succeeds then return access granted
3. else

(a) compute a set of disclosable credentials CD entailed by PD and Cp ,
(b) compute a set of missing credentials CM subset of the disclosable ones such that:

- PA together with Cp and CM entail r, and
- PA together with Cp and CM preserve consistency

(c) if CM does not exist then return access denied
(d) if CM exists

i. compute a stepwise missing set of credentials
CM1 = doStepwiseDisclosure(CM)

ii. if CM1 exists then return CM1
iii. else return access denied

}

Figure 3: Interactive Access Control Algorithm with Stepwise Disclosure

The negotiation protocol in [7] focused on providing efficient negotiation process in agent-
based autonomic communications. As such, the protocol forces any two opponents to be stateful
by keeping active state of a current negotiation process in order to consistently request missing
credentials to each other. There are two main disadvantages of the negotiation protocol:

• The protocol design requires a direct and open network connection between negotiation
agents enabling direct requests between a client and a server. This aspect limits protocol
usage especially in Web services-based systems where, for example, the presence of firewall
proxies disables direct connections to clients.

• There is no track of requests and counter-requests on the opponent side. An opponent
cannot distinguish when a credential request comes in response to a counter-request and,
as a consequence, a negotiation deadlock6 situation is indistinguishable from a long nego-
tiation process. In this case, if another negotiation path is possible then in the presence of
a deadlock the session will expire and the negotiation process will fail, even if a successful
negotiation alternative exists .

The new design goal is to achieve a stateless negotiation process on the server side, while
keeping stateful negotiation on the client side. Thus, a client agent can establish negotiations
with a server agent only via request-response messages traversing a firewall proxy and load
balancer.

We improved the negotiation protocol of [7] by making the core interactive access control
model of [6] step-wise, i.e. instead of returning a set of missing credentials that satisfy a given
request, the IAC algorithm returns a stepwise set of credentials, subset of the missing set, by
strictly following the disclosure policy information. The enhanced interactive algorithm is used
on both client and server sides for decision making.

Figure 3 shows the interactive access control process enhanced with the stepwise disclosure
control functionality. Here, PA denotes access control policy of an agent, PD denotes credential
disclosure policy of an agent, Cp denotes all credentials presented by a remote opponent within
a given access control session, and r denotes the service request a negotiation is triggered upon.

Steps 1–3d are those of the interactive access control [6, page 12] while steps 3di–3diii have
been taken from the original negotiation protocol [7, page 16]. However, there is an important
element to take into account when designing the new access control algorithm with respect to
the old IAC model of [6] – we have to internally transform PD to be credential step-wise aware
policy with respect to the client’s declined (to present to the server) credentials. Following that,

6Negotiation deadlock is for example when a server requires credential A for a resource, but disclosing credential
A at the client requires first credential B disclosure from a server, but credential B on the server requires credential
A on the client. In negotiation deadlock neither of the opponents progresses and the negotiation fails.
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step 3a computes disclosable credentials if they are entailed by a valid credential chain having no
declined credentials in its path. In that case, we achieved consistent computation of a step-wise
set of missing credentials from step 3di based on the computed set of missing credentials from
step 3b for all client-to-server stateless negotiation interactions within a security session.

We make PD step-wise aware (step 3a) following the method described in [7, page 16]. In-
formally, we syntactically change the structure of PD by making any credential term in a head
of a rule deducible by PD if it has not been declined by the client7. Important to note is that
the modified stepwise-aware PD remains a stratified logic program if the original PD is stratified,
which is a prerequisite for the IAC model [6].

Server-side guarantees. Trust negotiation algorithm on the server side has been replaced by
the new interactive access control algorithm with a stepwise disclosure control. We removed
negotiation state maintenance from the server side, thus creating a stateless negotiation service.

The new server-side negotiation process guarantees that if a negotiation starts with a given
set of missing credentials (necessary for granting a resource), over subsequent interactions the
same set of missing credentials will be recomputed by the server for the given request and the
stepwise approach will progress with the correct negotiation state. We recall that to guarantee
consistent stateless negotiation process PA has to be a well-behaved policy and PD a stratified
logic program. We refer to [6] for details of both policy requirements and point out that these
policy requirements do not limit policy expressivity but do cover a wide range of possible access
control specifications including those of the ENS.

Although the server-side algorithm guarantees a consistent negotiation process over stateless
Web services communications, yet the protocol has to ensure that a client does not gain more
information than allowed by a server whatever negotiation state manipulations a client may
perform. To address this, we keep the following information on the access control session data
on the server side: client’s presented credentials, client’s declined credentials, and history of
credentials requested to the client within a session. That information helps us to detect:

• if a client wants to make the server’s negotiation process compute past negotiation re-
sults (repeating past steps) thus forcing endless negotiation processes (not gaining more
information but) making easy a denial of service attack,

• when a client wants to inject non server-requested credentials thus maliciously probing
server’s behavior.

On the one hand, the server-side modification allows us to simplify the negotiation model
by removing active negotiation state maintenance and, on the other hand, to preserve flexible
disclosure control of credential information to an opponent and the same negotiation protection
of credential disclosure as in the old negotiation protocol [7].

We added a new feature on the server-side negotiation that if a client presents non-server-
requested credentials (for whatever reason) the server agent will deny the negotiation process for
a service access. This feature gives some protection from malicious probing by clients wishing
to explore the server’s behavior and potential DoS attacks.

Client-side guarantees. Client-side negotiation schema also adopted the IAC with stepwise
disclosure control, and transformed the old negotiation algorithm from a thread-based implemen-
tation to a recursive execution of negotiation steps. This last choice was influenced by the fact
that we wanted to detect situations of negotiation deadlock, a disadvantage of the old protocol
design, allowing whenever possible successful negotiation between two opponents. We achieved
comprehensive negotiation via a recursive process where the client agent keeps stateful nested
negotiations and unrolling them back consistently. In that way, the client-side agent keeps track

7The access control session data [6] keeps a set of declined credentials by a client not shown in the figure for
simplicity.
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Figure 4: Trust Negotiation Example

of current negotiation status and in the presence of deadlock denies current negotiation step
(credential request) to enable further progress and potential negotiation completion.

The new client-side negotiation schema also allows us to traverse firewalled networks and a
load balancer via client-initiated request-response communications. This was an important step
towards Web Services communications.

6.2. Trust Negotiation Example
Trust negotiation puts in the hands of the clients important protection of their own credentials

(certificates) when interacting with ENS, where a user may have credentials for both public ENS
and private (company-specific) ENS. In such a case, a user can define fine-grained disclosure
control of own credentials and depending on the remote ENS a user interacts with, the proxy
will disclose only relevant credentials.

Figure 4 shows a scenario of the administrator privilege establishment necessary for granting
exclusive access to update entity service of the ENS. On the left-hand side and on the right-hand
side of the negotiation process the policy rule governing a current negotiation step is shown. For
example, the policy rule for update entity service states that access to that service is given to
legal OKKAM users who have an administrator privilege.

When a user sends an update entity service request, the ENS server-side proxy requests the
user to authenticate as a registered user. On the user side, the proxy component looks for a
rule protecting the user public-key certificate necessary for user authentication. The user-side
security policy specifies that the user’s public-key certificate is given only to entities identified
as ENS servers. In turn, the client proxy sends a counter requests for server authentication as
ENS server. The server looks at its security policy and grants its public-key certificate to the
client. Next, a mutual authentication process follows with session key establishment based on
mutual certificate security standard.

The steps of mutual authentication have been designed to be taken for all protected ENS
services (with proof of possession of public-key certificates). We achieve that by using WS-
SecurityPolicy standard, in the WSDL document of the protected WS APIs, specifying all ser-
vices as protected access with user-side authentication by means of X.509 token format. In
addition, the latest Metro release enables, by using WS-SecurityPolicy, servers to publish in-
side the WSDL of protected services, their public-key certificates so that any client parsing the
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WSDL can obtain all the necessary information for starting up the mutual certificate security
protocol. For the time being, the client-side proxy first obtains the server identity certificate via
a dedicated WS API and then performs the mutual certificate security mechanism.

Once client and server complete a successful authentication, the information on presented
certificates is made available on the access control level to facilitate the decision making process.
Next, the access control module at the ENS side computes that the user needs an administrator
attribute certificate to access update entity service, and requests that from the client.

In turn, the client proxy consults its security policy to check whether the client’s administrator
certificate is protected. The policy says that the user administrator certificate is authorized for
disclosure only to ENS servers run as ENS Public. This requirement is defined since the user
has administrator rights only on the ENS (not on ENS private nodes). In that case, the client
proxy negotiates the disclosure of the user’s administrator right with the server proxy. Since
the user is already authenticated, the access control mechanism on the server side grants the
disclosure of server’s ENS Public attribute certificate to the client. Next, the client discloses its
administrator certificate to the server and the server grants an invoke operation on the service
update entity.

6.3. Brave and Cautious Negotiation Modes
Another novelty of the negotiation protocol regarding performance and practical aspects

is that it enables two explicit modes of negotiation: brave and cautious modes. Any client-
server negotiation process takes place over a secure communication channel and with the verified
identity of the opponent.

Cautious negotiation mode enables access control decision process on any credential request
by an opponent. In other words, this mode enables policy-driven negotiation. Referring to the
example above, when the ENS requests an administrator credential from a client, the client proxy
triggers a decision making process if the credential policy defines any protection on disclosing
the requested credential, and then grants or negotiates with the server on missing credentials.

Brave negotiation mode refers to a mode of negotiations where an opponent (client or the
ENS) discloses their own credentials without any policy-driven access control bypassing the
decision making part. In our example, when a server requests an administrator credential from
a client, the client-side proxy will grant disclosure of that credential without access control on
that credential. This mode has practical implications in cases where a client does not need
fine-grained credential control but trusts the remote domain identity as sufficient for disclosing
their own credentials.

7. Security Architecture Implementation

First achievement of the proxy implementation is enabling secure communications transpar-
ent to OKKAM-enabled applications. The proxy component implements all remote ENS APIs
as locally deployed allowing easy and intuitive integration with ENS applications. The proxy
provides local replicas of all ENS APIs (signatures). Second achievement is encapsulation of
authentication and access control mechanisms for accessing ENS APIs by enforcing completely
transparency to applications security-related processes. The client-side proxy automatically ne-
gotiates with the server-side proxy (the PDP service) for more access rights necessary to get
service access.

The ENS provides all functionalities via Web Services APIs divided into two sets: public non-
secure WS APIs8 and public secured WS APIs9. The set of non-secure APIs contains those APIs

8http://api.okkam.org/okkam-core/WebServices?wsdl
9http://api.okkam.org/okkam-core/WebServicesSecured?wsdl
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available for open and uncontrolled access (e.g., all query-related APIs) accessible by standard
Web Services means.

The public secured APIs require secure and confidential communications with appropriate
access rights for their execution. An important security aspect here is that all non-secure APIs
are also provided as secured APIs (without access control but over a secure communication
channel). In that way, a user can enforce privacy and confidentiality on all interactions with
the ENS APIs including the non-secured APIs. For example, when a user wants to avoid any
intermediary third parties monitoring what he queries to ENS.

Figure 5: API-level Proxy Communications

All interactions with the secured ENS APIs are performed via the security proxy. Figure 5
shows the API-level message flow of proxy-based communications. Applications can establish
directly or indirectly via proxy, communications for the non-secured APIs. The proxy component
replicates all ENS APIs, both non-secured and secured ones, as locally accessible to applications
in order to make access to those API as transparent as possible for application developers.

Another goal is to provide developers with uniform API access allowing all APIs to be accessed
via the proxy component without keeping in mind which of those require secured access and which
do not. The proxy component is aware of which APIs are secured and for those requiring no
protection the proxy just dispatches the respective requests/responses to the public ENS APIs,
as shown in the figure above.

When the proxy is configured to enforce secure communications on all interactions with the
ENS, it will dispatch all APIs invocations to the secured versions of the APIs even if a non-
secured API is locally invoked.

The proxy component has two main modes of usage: as a localhost service and as a library.
The local host service implements the same remote WS APIs (interfaces only) but accessible
on localhost connection10. This is an important mode addressing the needs of so-called “thin”
applications, such as plug-ins for third party applications, or applications that cannot use the
proxy as a library. In such case, an application invokes the WS APIs on localhost for accessing
the remote WS APIs. The library usage, in contrast, provides the remote ENS APIs as local
library API signatures for accessing the respective remote WS APIs.

7.1. Proxy Architecture Inside
The main goal of the proxy design is to establish secure and trusted end-to-end (beyond

point-to-point) message-level communications traversing local area network firewall and remote
(http) load balancer.

Figure 6 shows the proxy architecture and its insight view of how main components com-
municate with each other. The access control and trust negotiation component represent logic

10Client-side proxy component does not have to be run on a localhost but could be also run on a separate
machine. In that case, one needs to additionally secure all interactions between applications and the proxy.
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Figure 6: Proxy Architecture and Communications

expression of how trust is managed/established with potential ENS nodes and potential ENS
users, while the WS security standards component is the lower level definition of how the trust
requirements are communicated to an opponent. The last component provides the actual WS
communication mechanism over a secure communication channel. The security channel provides
end-to-end message communication, i.e. between a client and an ENS replica. The load balancer
does not decrypt any messages to serve its functionality.

The trust negotiation based access control, presented in Section 6, has been implemented as
a new release of iAccess system11. An important technical feature of the new iAccess release
is the implementation of a service (daemon) running locally on a node replica which manages
externally to a Java application server’s executions of the underlying DLV12 system thereby
avoiding the related memory allocation issue by the OS.

Another novelty of the proxy component is the proper integration of iAccess with Metro13,
which provides state-of-the-art implementation of WS security standards. The effort dedicated
to integrating the access control and negotiation component with the Metro component led to
achieving an efficient and powerful end-to-end authorization process for Web services.

In addition to security specification and enforcement, the proxy component has been designed
to provide two more functionalities: secure user registration to the ENS and secure administra-
tion of user certificates. The official OKKAM registration front-end14 internally uses the proxy
to perform secure user registration to the ENS. There is a dedicated GUI on the client-side proxy
that allows secure and authorized administration of users. This functionality is important for
the well-being of the ENS allowing authorized execution of several administrative tasks.

Server-side proxy scalability. One of the technical challenges in developing the ENS security
mechanism is addressing scalability of security services having the same scalability as the ENS
itself. Instead of having a separate server, inside the ENS cluster, handling all security com-
munications we replicate all security functionality on any server in a cluster hosting the ENS

11http://www.interactiveaccess.org
12DLV is used for the underlying logic computations of the access control model [6].
13https://metro.dev.java.net
14http://register.okkam.org
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Figure 7: Proxy Interactions with the ENS

without imposing any sticky session requirement on the load balancer. In such a design choice,
establishing secure and trusted communication to ENS inherits the scalability of ENS cluster.

We deployed the memcached15 service for distributed session sharing between ENS replicas,
as shown in Figure 6, achieving coherent decision making on any replica in a cluster. The access
control module has been extended to use the memcached service for sharing access control session
data. The Metro component has also been extended to use the memcached service for low-level
(session-aware) encryption/decryption of incoming/outgoing messages.

Any replica of security services in a cluster replicates the same security policies, the same cer-
tificate authority used for issuing user certificates, and the same public-key certificate identifying
a current replica node. Appendix A presents the designed PKI model.

7.2. Proxy Interactions with the ENS
A design goal behind the security proxy is to enable efficient security access to ENS. We

have designed the security proxy component establishing single security session for multiple user
requests regardless of which ENS replica handles the requests.

Figure 7 shows the main phases a client-side proxy component performs upon a request by
an application. The figure shows the proxy interactions when a user application accesses an ENS
API via the proxy for the first time. Any subsequent request is granted if a user has already
presented (in previous interactions within the security session) enough credentials granting access
to the request. Similarly, the user-side proxy bypasses all negotiation requests for credentials
the server has already presented in previous interactions within the session.

Mutual Certificates security mechanism16 is used for establishing secure and confidential
message channel between users’ applications and the ENS. Both client and server use X.509
certificates, issued by an OKKAM certificate authority, to authenticate each other. Once mutual
authentication is established, there is a mandatory access control process if a registered user is
allowed to access the requested ENS API. When a client needs more access rights for a given
request an automated trust negotiation process is triggered for the missing credentials. Upon

15http://memcached.org
16Defined by WS-SecurityPolicy and WS-SecureConversation standards.
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receiving the very first request the proxy first obtains the server certificate, verifies if it is
trusted, and runs the mutual certificate security protocol establishing a session encryption key.
All subsequent proxy interactions run over the already established confidential channel.

We gave the sever-side proxy component cache access decisions within a given security session
so that in every repeated API request, the policy enforcement component bypasses the policy
decision point if the service has been already granted within the session.

When the requested API is a non-protected API the proxy invokes the corresponding ENS
API in the public space without using the security channel. Otherwise, the proxy invokes the
API under the protected ENS API services using the already established security channel. When
there are not enough access rights the ENS denies access to the requested API including a list of
missing credentials. If missing credentials are required, the proxy triggers a negotiation process
with the PDP API. This phase may require more interactions between the client-side proxy and
the PDP depending on the underlying security policies.

Upon successful negotiation the client-side proxy again invokes the WS API and forwards
the response back to the application. If at this step the server (for whatever reason) returns
an authorization exception for missing credentials the user-side proxy does not initiate a new
negotiation process, but instead returns the authorization exception (of access denied) back to
the application. All subsequent API requests to the ENS share the same security session without
repeating trust negotiation on already negotiated credentials.

7.3. Certificate Revocation
Certificate revocation service facilitates the provision of revocation and certification revoca-

tion status service in establishing trusted communications. Certificate revocation is based on
certificate revocation lists17 (CRLs) at ENS side. CRLs are maintained within the ENS cluster
by means of the persistent storage functionality provided by the underlying database module
of unified data storage and retrieval within a cluster. There are two certificate revocation lists
maintained: okkamall.crl18 and okkamauthorities.crl19. The first CRL regards revocation cer-
tificates of all OKKAM entities both end users and OKKAM authorities, while the second CRL
regards revocation certificates of OKKAM authorities only. The okkamall CRL is to be used
primarily by entities requiring validation of end users such as the ENS servers, the administra-
tion console and the ENS Web toolkit, while the okkamauthorities CRL is to be used primarily
by end users when interacting with OKKAM front-ends or with the ENS.

The okkamauthorities CRL is a subset of the okkamall CRL. Furthermore, okkamauthorities
is expected to have substantially fewer revocation certificate entries with regards to the okkamall
CRL, as well as, having much less frequency of certificate revocation. The motivation for having
okkamauthorities is to make efficient end users (the most delicate use case) certificate revocation
status control when interacting with the ENS and with the ENS front-ends.

There is dedicated ENS API providing the most up-to-date response of certificate revocation
status compared to the CRL approach. The API serves solely the security proxy functionality.
It directly uses the persistent storage data (where each revoked certificate has a single entry
in the storage) enabling efficient response. There is a dedicated GUI of the security proxy
facilitating management of CRLs on ENS where access to respective APIs of certificate revocation
is controlled to users (for user revocation) or administrators (forced revocation).

7.4. End Users Authentication via OKKAM Web Front-ends
User communications with the OKKAM Web front-ends are secured by means of HTTPS20

protocol where end users register with the ENS to obtaining a certificate attesting to them

17http://tools.ietf.org/html/rfc3280
18http://api.okkam.org/okkam-core/crl/okkamall.crl
19http://api.okkam.org/okkam-core/crl/okkamauthorities.crl
20http://tools.ietf.org/html/rfc2818
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being OKKAM users. The security proxy has its own certificates in order to be authorized
to access ENS, such as, a public-key certificate of being legal OKKAM entity, trusted entity
creator attribute certificate necessary for creating entities on behalf of end users, or administrator
attribute certificate for accessing ENS life cycle operations such as merge, split, delete.

In all cases, the proxy component authorizes to the ENS with its own credentials and when-
ever required by the ENS APIs presents end user certificate. There are two main front-end
applications: entity-creator front-end and administration console front-end. Both of them run
their own security proxy component with their own certificates.

Entity creator21 helps users to create ENS entities. When the proxy is run by the entity
creator Web front-end, the proxy needs a registration certificate of being an OKKAM registered
entity, and a trusted entity creator attribute certificate to be authorized to create entities on
behalf of end users. There are dedicated ENS APIs, different from the create entity APIs, that
allow ENS entity creation on behalf of end users. The new APIs require an additional input
parameter, with respect to the standard create entity APIs, the end user public-key certificate
on behalf of which the entity creator acts. By using these APIs the ENS marks (logs) the end
user as the author of an entity creation act, and stores the identity of the entity creator service
as the intermediary entity the user created the ENS entity.

Administration console22 is another important front-end application facilitating the adminis-
tration of ENS entities. Access to this front-end is granted only to users that have been approved
to act as administrators. The approval process requires that a registered OKKAM user sends
its public-key certificate to an ENS administrator for approval and the inclusion of that cer-
tificate in a set of recognized administrators by the administration front-end application. The
administration console is accessible only via HTTPS with mutual client-and-server certificate
authentication. There is access control if the user certificate (obtained from HTTPS protocol
context) is among the approved users of acting as administrators.

Similarly to the entity creator use case, all entity life cycle APIs have alternative APIs
providing the same operations but on behalf of end users with an additional argument: the
end user public-key certificate. The ENS logs, as the author of a current life cycle operation,
the end user acting via the console interface. The security proxy of the administration console
is authorized as being a legal OKKAM entity and, secondly, of having (own) administration
privileges, in order to invoke life cycle operations on behalf of end users.

Private ENS node communications with the ENS are treated as communications by a normal
OKKAM registered user. In this use case, the private ENS node is not considered to act on behalf
of end users (although a private ENS does offer ENS services to domain/company-specific end
users) and it is authorized to perform secure access to ENS as is the case of a registered user.
The certificate attribute model of the ENS allows private nodes to be recognized by their private
node attribute certificate and be given some privileged access. However, this feature is left open
for the future evolution of ENS.

8. Security Architecture Performance Evaluation

We will present the performance of the security proxy and the PDP service of ENS. All
measurements have been performed on both a locally installed ENS core and on the real ENS
platform23.

8.1. Security Proxy Performance
There are five distinguishable phases of ENS proxy-based security communications in a de-

fined order:

21http://api.okkam.org/EnsWebToolKit
22http://api.okkam.org/AdministrationConsole
23ENS platform accessible at http://api.okkam.org
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1. Get server certificate for secure channel establishment (non-protected access).
2. Secure communication channel establishment using client and server certificates.
3. Trust negotiation process in brave mode for establishing administrator privileged access.
4. Trust negotiation process in cautious mode for establishing administrator privileged access.
5. API invocation over a secure channel with grant access decision (enough credentials).
6. API invocation over a secure channel with cached access decision.

Figure 8 reports the first set of experiments with total round-trip messages as measured on
a client side. The figure shows both sets of results alongside each other: left-hand side columns
denote security performance on localhost tests and right-hand side columns security performance
on the ENS platform. The localhost experiments show the security performance with almost no
communication cost, while the measurements with the ENS platform show results with the real
communication overhead.
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Figure 8: ENS localhost and ENS platform tests performance (milliseconds)

Each number in this first set of tests is reported as an average of 50 trials run sequentially.
The interesting part of this performance comparison is the sensitivity of security process with
respect to communication costs instead of the expected security computational costs for secure
API invocation case (points 5 and 6 above).

Upon a service request via the security proxy, a client will experience a total of 970 ms
of secure API invocation24 excluding the time of actual service execution. The 970 ms time
splits in 793 ms of secure handshake establishment and 177 ms of secure API request. Any
repeated access to the same API is measured to 167 ms including the security performance for
entire message communication (request/response) and with cached access decision. In the case
the requested service requires access by administrators, a client will experience a total of 1.348
seconds (793 ms of secure establishment + 378 ms TN of admin in brave mode + 177 ms secure
access with decision), and will experience 167 ms for any repeated access request to that service.
Get server certificate time is not counted in the above examples as it can be performed once
prior to any session establishment by the proxy.

ENS platform test. The ENS platform is dedicated by the project consortium for the real
production services [26]. The platform has the following hardware:

• Machine 1 (of cluster): 8 core Intel(R) Xeon(R) CPU E5420 2.50GHz, 8GB of DDR2
SDRAM 667 MHz, Linux (Debian) OS.

24For example in the case of creating a new entity service accessed by a registered user, refer to Appendix A.
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• Machine 2 (of cluster): 8 core Intel(R) Xeon(R) CPU E5420 2.50GHz, 16GB of DDR2
SDRAM 667 MHz, Linux (Debian) OS.

The client machine for these tests is the machine used for the localhost experiment with the
same client-side security proxy and the application using the proxy to access the ENS platform.
We used the university’s Internet connection25. Figure 8 reports the ENS platform performance
results of the different phases of proxy-based security.

ENS local test. We have installed and run an ENS core on a machine with the following
parameters: Mac OS X, CPU Intel Core2 Duo at 2.5GHz, RAM 4GB DDR3 at 1GHz. On
the same machine we also run the proxy component with a client application using the proxy
to access ENS APIs via the localhost connection. It is important for this experiment to mea-
sure (client observable) security performance with no communication cost. In other words, we
measured security-related computations including client side encryption/decryption, server-side
encryption/decryption and access decision time.

8.2. Bulk Import Security Performance and Scalability
In the following we present the ENS platform performance for the use case of bulk import

– automated tool support for entity import (creation) from external data set – considered as
the most sensitive use case to security overhead. The goal is to show how total security over-
head (including secure communications establishment/handshake, encryption/decryption, access
control, and communication overhead) impacts on bulk import functionality.

Sequential Access. We conducted a set of experiments with the ENS platform to measure the
average access time on performing 1000 times sequential access with and without security. Table
2 shows the average time per single API access, client observable round-trip time including
communication cost. We used a dedicated API in the pubic ENS space and the same in the
protected ENS space with controlled access to authenticated users. The average security overhead
for accessing the API was measured to 26 ms, much below the identified performance requirement
of few hundreds of a second (Section 4).

Non-secured access Secured access Security overhead
Average request and response
time of API access

142 ms 168 ms 26 ms

Table 2: Bulk import sequential access average time

Concurrent Access. The next set of tests is used to measure the scalability of the security
solution in the context of concurrent service requests to the ENS. We transformed the bulk
import sequential test into a concurrent access test where we defined several client applications
each running its own security proxy. We performed a bulk import test having N number of
clients running concurrently each in different security session making 10 requests to a protected
service on the ENS. We repeated the concurrent test for a non-protected service access to derive
the security overhead. We used two computers with the same hardware configuration as that of
the aforementioned ENS localhost test each of them running concurrently N/2 number of clients.

Figure 9 shows client perceived (round-trip) access time average of M number service requests
performed by N number of concurrent clients. The security overhead increases together with the
increase of concurrent service requests. If we look at the case of 100 concurrent clients with
a total of 1000 service requests we have a security overhead of about 250 ms which is still
within the identified requirement of acceptable security overhead. Given the last case of 200
concurrent clients with 2000 requests the security overhead is 469 ms, not much above the
identified requirement. Comparing the numbers of both tests, we can see that up to 40 clients

25University of Malaga (Spain).
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Figure 9: Bulk import concurrent access average time (milliseconds)

with 400 requests in the concurrent access test the security overhead remains comparable to that
of the sequential access test where the difference is due to fluctuations in the network connection.

8.3. PDP Performance
An important part of the whole set of experiments is the security performance of the PDP

service. Measurements on this level of granularity show the actual capacity of ENS single-core
instance in response to secure versus non-secure service access.
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Figure 10: PDP performance per request and per single node (milliseconds)

Figure 10 shows the PDP decision making on the different access control cases obtained as
part of the ENS platform test on machine 2 of the cluster. The PDP response time ranges from
29 ms down to 3 ms per single request. The time of 29 ms is the PDP security response time
for a single negotiation step. The overhead is mostly influenced by the access decision process
of computing missing credentials. Inherent to the adopted access control model is that the deny
access decision is taken when no missing credentials are found for a potential negotiation26. The
ENS security overhead of granting access to a service takes 14 ms. This case happens either

26If a user does not have enough access rights to be granted a service request and no missing credentials are
found that would grant the user access to that service, the server denies access.

23



after a successful negotiation (has taken place) or if a client requests a service within an existing
session for which he has enough rights but the access decision is not cached.

The PDP security overhead with cached access decisions, the case in every repeating service
call within the same security session, is measured 3 ms overhead to an API execution. Essentially,
this time includes only the access times to memcached service for session data retrieval for cached
decisions. The cached access decision time corresponds to the most frequent case of using ENS
APIs, especially, for the bulk import scenario. The ENS security overhead with cached access
decision is measured to 11 ms where 8 ms time is taken by Metro-level cryptographic operations.

9. Discussion

Security Management. The concept of proxy-based security facilitates transparent to end
users (business-driven) security management. This allows users and companies to define security
requirements on communications with the ENS without imposing any changes on applications
to conform to new security settings. For example, if a pharmaceutical company wants to enforce
confidential access to the company’s private ENS (with identifiers of pharmaceutical products),
the company will have to set all APIs as protected APIs. In such a case, the proxy will enable all
end users’ (company’s) applications communicate with the ENS APIs confidentially and conform
to the respective access control requirements without any application-level changes. End users
could also enforce confidential access to all ENS APIs transparently to application-level by
configuring client-side proxy forward all API requests to their protected versions.

The security model behind the proxy allows user-centric control of credential disclosure.
There is a credential policy on the user side that governs which user’s credentials are to be used
and under what requirements. In such a case, a user of a company can restrict his credentials only
with the company’s ENS, and OKKAM specific credentials with the public ENS, respectively.

System Robustness. Another aspect towards system adoption is its robustness against possible
threats. Although system robustness may cover many system aspects beyond current paper’s
scope, we will overview the threat closely relevant to the system robustness against denial of
service (DoS) attacks on the negotiation-based access control service (the PDP service).

Trust negotiation provides systems for open environments (such as the ENS) with a pro-
tection mechanism from strangers and gradual trust establishment with previously unknown
entities. However, stateful negotiation implies active server behavior with client agents (such
as, asynchronous negotiation with WS-Notification [23]). This aspect impacts significantly on
potential DoS attacks on the system making clients explicitly keep servers in negotiation by
making servers dedicate computational and memory resources for negotiation state maintenance
to interact with clients.

Our stateless server-side negotiation focuses, shifts the negotiation logic on the policy evalu-
ation level without reasoning on higher-level negotiation states. For example, a server agent of
stateless negotiation does not need to reason for situations of negotiation deadlock, what would
be the case of statefull negotiation, because the server agent is passive (stateless) of previous
negotiation states. The client agent, in turn, keeps stateful negotiation (client-driven) and is
responsible for the cooperative execution of negotiation steps and completion of the negotiation
process. We concluded that in large scale intensive systems stateless server-side negotiation
enhances system robustness against DoS attacks more than stateful negotiation approaches.

We summarize the technical decisions taken to further enahnce system robustness against
DoS attacks: first, replicating the PDP service throughout the nodes in a cluster ensuring a
certain level of service availability, second, enhancing negotiation protocol behavior by keeping
a record of requested credentials from clients (Section 6.1) within a session, and, third, defining
an upper bound of interaction steps a client is permitted for successful negotiation on any
service access (by analyzing the server security policies) so that the server timely terminates any
negotiation process exceeding the upper bound, for example, if an attacker intentionally enters
into a negotiation deadlock.
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Intrusion Detection. Towards a more complete security protection of ENS is the adoption of
an Intrusion Detection System (IDS) [31] as part of the security framework. An IDS consists of
(software) components that monitor actions executed by users or applications. There are two
kinds of IDS: those which use signatures to detect attacks whose behavior is well understood
(e.g., [32]) and those which use statistical or data mining analysis (e.g., [33]) to detect attacks.

A potential synergy of integration of an IDS into the OKKAM security framework is that the
IDS behavioral model could be enhanced by taking into account several factors from the access
control process, such as user behavior and credentials obtained during the negotiation process,
for a more advanced reasoning on intrusion detection.

10. Conclusions and Future Work

The paper has presented a security framework for service provisioning of an ENS – a reli-
able data intensive load-balancing cluster system. There are three main foundational elements
underpinning OKKAM security infrastructure: (i) Digital certificates qualifying OKKAM com-
munity of users, their privileges, and OKKAM infrastructure nodes. (ii) Trust negotiation-based
access control enabling on-the-fly automated credential establishment. The negotiation protocol
improves on previous work to provide stateless server-side negotiation which scales well to the
needs of the ENS. (iii) Proxy component engineering providing security, trust and privacy control
aspects inside a transparent configuration-only component with high-level security abstraction.

A detailed security performance evaluation has been presented supporting conclusions of
scalable security design and efficient implementation with respect to the performance guidelines
set out by the project consortium.

Future Work. The large-scale ENS repository introduces new challenges related to specifica-
tion and management of policy requirements for the vast number of repository entries. Future
work will move in the direction of extending the negotiation based access control with the se-
mantic access control (SAC) model [34, 35]. The SAC model defines in a scalable and flexible
way semantic abstraction of access policy specification from policy applicability to resources.
The goal is to qualify a large amount of ENS repository entities to relatively few access policies
and, as consequence, facilitate scalable policy management and enforcement.

Implementation- and performance-wise direction of future work is to provide the underlying
logic computations of deduction and abduction as Java-based solutions, avoiding the execution
of an external to Java DLV system. We plan to approach this aspect by adopting a Java-based
Prolog inference engine supporting both reasonings [36].
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Appendix A. OKKAM Certification and Attribute Management

Figure A.11 shows the public key and privilege management infrastructure (PKI/PMI) model
designed and deployed for the OKKAM community.

Figure A.11: OKKAM certificate infrastructure

The OKKAM Global Root CA is the authority trust starts from. It can be seen as the
representative of the project consortium. The root is the most sensitive authority, which sets
up trust in OKKAM infrastructure and in OKKAM community. In order to reduce the risk of
compromising the global root and for the sake of better management, the OKKAM Global Root
CA delegates to a subordinate CA, called OKKAM CA Class 2, the responsibility to certify all
users and entities of the OKKAM community.

In addition, the OKKAM Global Root CA has been defined with two more responsibilities:
(i) certifying ENS nodes by means of identity and attribute certificates such as ENS Public
and ENS private nodes27, and (ii) certifying/promoting ENS Public managers. The former case
allows the OKKAM consortium to keep control on what ENS systems are legally certified as ENS
systems so that any third party can verify if it trusts that node as being part of the OKKAM
infrastructure. When the OKKAM Root CA certifies a private ENS node this means that the
private ENS node is part of the OKKAM community.

27The OKKAM Public Key Infrastructure design supports also the use case where the OKKAM Global Root
CA delegates to a subordinate CA responsibility to certify ENS nodes as being part of OKKAM community.
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Attribute name Permissions on the ENS

ENS Public Manager
– High-level permissions on certificate management.
– No permissions on entity creation, update, and life-cycle operations

ENS Public Administrator

– Limited permissions on certificate management.
– High-level permissions on entity creation, update, and life-cycle
operations (such as merge, split, delete ENS entities) including per-
missions on behalf of end users.

ENS Public Trusted Entity Creator
– Permissions on create new ENS entities on behalf of end users.
– Permissions on update ENS entities on behalf of end users.

OKKAM Registered User
– Permissions on create new ENS entities.
– Permissions on update ENS entities by append new attributes only.

Table A.3: Certifiable attributes and permissions

The OKKAM consortium is represented by ENS public managers certified by the OKKAM
Global Root CA. The goal is to allow the OKKAM consortium delegate responsibility of man-
aging the ENS to dedicated people. ENS public managers are the principle entities that can
approve (delegate specific responsibility) to other key entities, such as administrators of ENS,
trusted entity creators, etc. for the sake of well-being of the ENS.

Table A.3 summarizes the permissions for each of the attributes. All certificate management
aspects have been provided as dedicated ENS APIs and accessed via the security proxy admin-
istration GUI. The goal of the above management of responsibilities is to better scale to the
expected ENS community expansion of users.

An important aspect of the ENS Public Manager attribute is that it has no permissions
allowed on entity creation and life cycle management. The main reason is to separate the
responsibility of this attribute from the other attributes, especially, from the administrator
privileges. However, a public manager can self-promote himself to become ENS administrator
and thus obtaining the high-level permissions on ENS operations. In this case, the access control
policy will force him to use only one of the attributes at a time, that is forcing a separation of duty
constraint on the presence of those attributes. To face scalability and flexibility when OKKAM
community grows, a user promoted as ENS administrator is given the right to promote registered
users of being ENS trusted entity creators.

Achieving scalable access to ENS services from external domains with own PKI models and
certifiable attributes could be approached by semantic interoperability of certificates [37].

User registration. Users register via an OKKAM front-end for obtaining a public-key cer-
tificate of being OKKAM users. Once registered, users can be promoted to take higher level of
permissions on ENS via the certificate management process above. A user obtains its registra-
tion data in a single file encrypted with the password the user specified during registration. The
registration file conforms to PKCS1228 standard. The registration data contains comprehensive
data structure allowing end users establish trust with other registered OKKAM entities.

Users install their certificate data in a Web browser, OS, or security proxy specifying user-
name/password of registration so that the system extracts the certificate information used for
the actual user authentication with remote sites. Users’ attribute certificates are installed in the
security proxy but their usage requires the user initialize the security proxy with a public-key
certificate matching the identity information of the attribute certificates.

Attribute certification. Obtaining any attribute certificate is a non-automated process involv-
ing an approval by either an ENS public administrator or an ENS public manager. An OKKAM
registered user contacts any of the entities to get an approval by sending its public-key certifi-
cate. Upon approval, the administrator or the manager uses the security proxy (its GUI) to get
authorized access to ENS certificate management APIs for user attribute certification. The ENS
in turn e-mails the user its new attribute certificate.

28Personal Information Exchange Syntax Standard: http://www.rsa.com/rsalabs/node.asp?id=2138
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